ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
¾ÅÉ«Êé¼® ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

the critique of pure reason-µÚ22ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




birthplace£»¡¡and¡¡analysing¡¡the¡¡pure¡¡use¡¡of¡¡this¡¡faculty¡£¡¡For¡¡this¡¡is

the¡¡proper¡¡duty¡¡of¡¡a¡¡transcendental¡¡philosophy£»¡¡what¡¡remains¡¡is¡¡the

logical¡¡treatment¡¡of¡¡the¡¡conceptions¡¡in¡¡philosophy¡¡in¡¡general¡£¡¡We

shall¡¡therefore¡¡follow¡¡up¡¡the¡¡pure¡¡conceptions¡¡even¡¡to¡¡their¡¡germs¡¡and

beginnings¡¡in¡¡the¡¡human¡¡understanding£»¡¡in¡¡which¡¡they¡¡lie£»¡¡until¡¡they

are¡¡developed¡¡on¡¡occasions¡¡presented¡¡by¡¡experience£»¡¡and£»¡¡freed¡¡by

the¡¡same¡¡understanding¡¡from¡¡the¡¡empirical¡¡conditions¡¡attaching¡¡to

them£»¡¡are¡¡set¡¡forth¡¡in¡¡their¡¡unalloyed¡¡purity¡£

¡¡¡¡CHAPTER¡¡I¡£¡¡Of¡¡the¡¡Transcendental¡¡Clue¡¡to¡¡the¡¡Discovery¡¡of¡¡all¡¡Pure

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Conceptions¡¡of¡¡the¡¡Understanding¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Introductory¡£¡¡SS¡¡3



¡¡¡¡When¡¡we¡¡call¡¡into¡¡play¡¡a¡¡faculty¡¡of¡¡cognition£»¡¡different¡¡conceptions

manifest¡¡themselves¡¡according¡¡to¡¡the¡¡different¡¡circumstances£»¡¡and¡¡make

known¡¡this¡¡faculty£»¡¡and¡¡assemble¡¡themselves¡¡into¡¡a¡¡more¡¡or¡¡less

extensive¡¡collection£»¡¡according¡¡to¡¡the¡¡time¡¡or¡¡penetration¡¡that¡¡has

been¡¡applied¡¡to¡¡the¡¡consideration¡¡of¡¡them¡£¡¡Where¡¡this¡¡process£»

conducted¡¡as¡¡it¡¡is¡¡mechanically£»¡¡so¡¡to¡¡speak£»¡¡will¡¡end£»¡¡cannot¡¡be

determined¡¡with¡¡certainty¡£¡¡Besides£»¡¡the¡¡conceptions¡¡which¡¡we

discover¡¡in¡¡this¡¡haphazard¡¡manner¡¡present¡¡themselves¡¡by¡¡no¡¡means¡¡in

order¡¡and¡¡systematic¡¡unity£»¡¡but¡¡are¡¡at¡¡last¡¡coupled¡¡together¡¡only

according¡¡to¡¡resemblances¡¡to¡¡each¡¡other£»¡¡and¡¡arranged¡¡in¡¡series£»

according¡¡to¡¡the¡¡quantity¡¡of¡¡their¡¡content£»¡¡from¡¡the¡¡simpler¡¡to¡¡the

more¡¡complex¡­¡¡series¡¡which¡¡are¡¡anything¡¡but¡¡systematic£»¡¡though¡¡not

altogether¡¡without¡¡a¡¡certain¡¡kind¡¡of¡¡method¡¡in¡¡their¡¡construction¡£

¡¡¡¡Transcendental¡¡philosophy¡¡has¡¡the¡¡advantage£»¡¡and¡¡moreover¡¡the

duty£»¡¡of¡¡searching¡¡for¡¡its¡¡conceptions¡¡according¡¡to¡¡a¡¡principle£»

because¡¡these¡¡conceptions¡¡spring¡¡pure¡¡and¡¡unmixed¡¡out¡¡of¡¡the

understanding¡¡as¡¡an¡¡absolute¡¡unity£»¡¡and¡¡therefore¡¡must¡¡be¡¡connected

with¡¡each¡¡other¡¡according¡¡to¡¡one¡¡conception¡¡or¡¡idea¡£¡¡A¡¡connection¡¡of

this¡¡kind£»¡¡however£»¡¡furnishes¡¡us¡¡with¡¡a¡¡ready¡¡prepared¡¡rule£»¡¡by

which¡¡its¡¡proper¡¡place¡¡may¡¡be¡¡assigned¡¡to¡¡every¡¡pure¡¡conception¡¡of¡¡the

understanding£»¡¡and¡¡the¡¡completeness¡¡of¡¡the¡¡system¡¡of¡¡all¡¡be¡¡determined

a¡¡priori¡­¡¡both¡¡which¡¡would¡¡otherwise¡¡have¡¡been¡¡dependent¡¡on¡¡mere

choice¡¡or¡¡chance¡£



¡¡¡¡SECTION¡¡1¡£¡¡Of¡¡defined¡¡above¡¡Use¡¡of¡¡understanding¡¡in¡¡General¡£¡¡SS¡¡4



¡¡¡¡The¡¡understanding¡¡was¡¡defined¡¡above¡¡only¡¡negatively£»¡¡as¡¡a

non¡­sensuous¡¡faculty¡¡of¡¡cognition¡£¡¡Now£»¡¡independently¡¡of

sensibility£»¡¡we¡¡cannot¡¡possibly¡¡have¡¡any¡¡intuition£»¡¡consequently£»

the¡¡understanding¡¡is¡¡no¡¡faculty¡¡of¡¡intuition¡£¡¡But¡¡besides¡¡intuition

there¡¡is¡¡no¡¡other¡¡mode¡¡of¡¡cognition£»¡¡except¡¡through¡¡conceptions£»

consequently£»¡¡the¡¡cognition¡¡of¡¡every£»¡¡at¡¡least¡¡of¡¡every¡¡human£»

understanding¡¡is¡¡a¡¡cognition¡¡through¡¡conceptions¡­¡¡not¡¡intuitive£»¡¡but

discursive¡£¡¡All¡¡intuitions£»¡¡as¡¡sensuous£»¡¡depend¡¡on¡¡affections£»

conceptions£»¡¡therefore£»¡¡upon¡¡functions¡£¡¡By¡¡the¡¡word¡¡function¡¡I

understand¡¡the¡¡unity¡¡of¡¡the¡¡act¡¡of¡¡arranging¡¡diverse¡¡representations

under¡¡one¡¡common¡¡representation¡£¡¡Conceptions£»¡¡then£»¡¡are¡¡based¡¡on¡¡the

spontaneity¡¡of¡¡thought£»¡¡as¡¡sensuous¡¡intuitions¡¡are¡¡on¡¡the

receptivity¡¡of¡¡impressions¡£¡¡Now£»¡¡the¡¡understanding¡¡cannot¡¡make¡¡any

other¡¡use¡¡of¡¡these¡¡conceptions¡¡than¡¡to¡¡judge¡¡by¡¡means¡¡of¡¡them¡£¡¡As¡¡no

representation£»¡¡except¡¡an¡¡intuition£»¡¡relates¡¡immediately¡¡to¡¡its

object£»¡¡a¡¡conception¡¡never¡¡relates¡¡immediately¡¡to¡¡an¡¡object£»¡¡but

only¡¡to¡¡some¡¡other¡¡representation¡¡thereof£»¡¡be¡¡that¡¡an¡¡intuition¡¡or

itself¡¡a¡¡conception¡£¡¡A¡¡judgement£»¡¡therefore£»¡¡is¡¡the¡¡mediate

cognition¡¡of¡¡an¡¡object£»¡¡consequently¡¡the¡¡representation¡¡of¡¡a

representation¡¡of¡¡it¡£¡¡In¡¡every¡¡judgement¡¡there¡¡is¡¡a¡¡conception¡¡which

applies¡¡to£»¡¡and¡¡is¡¡valid¡¡for¡¡many¡¡other¡¡conceptions£»¡¡and¡¡which¡¡among

these¡¡comprehends¡¡also¡¡a¡¡given¡¡representation£»¡¡this¡¡last¡¡being

immediately¡¡connected¡¡with¡¡an¡¡object¡£¡¡For¡¡example£»¡¡in¡¡the¡¡judgement¡­

¡¨All¡¡bodies¡¡are¡¡divisible£»¡¨¡¡our¡¡conception¡¡of¡¡divisible¡¡applies¡¡to

various¡¡other¡¡conceptions£»¡¡among¡¡these£»¡¡however£»¡¡it¡¡is¡¡here

particularly¡¡applied¡¡to¡¡the¡¡conception¡¡of¡¡body£»¡¡and¡¡this¡¡conception¡¡of

body¡¡relates¡¡to¡¡certain¡¡phenomena¡¡which¡¡occur¡¡to¡¡us¡£¡¡These¡¡objects£»

therefore£»¡¡are¡¡mediately¡¡represented¡¡by¡¡the¡¡conception¡¡of

divisibility¡£¡¡All¡¡judgements£»¡¡accordingly£»¡¡are¡¡functions¡¡of¡¡unity¡¡in

our¡¡representations£»¡¡inasmuch¡¡as£»¡¡instead¡¡of¡¡an¡¡immediate£»¡¡a¡¡higher

representation£»¡¡which¡¡comprises¡¡this¡¡and¡¡various¡¡others£»¡¡is¡¡used¡¡for

our¡¡cognition¡¡of¡¡the¡¡object£»¡¡and¡¡thereby¡¡many¡¡possible¡¡cognitions

are¡¡collected¡¡into¡¡one¡£¡¡But¡¡we¡¡can¡¡reduce¡¡all¡¡acts¡¡of¡¡the

understanding¡¡to¡¡judgements£»¡¡so¡¡that¡¡understanding¡¡may¡¡be

represented¡¡as¡¡the¡¡faculty¡¡of¡¡judging¡£¡¡For¡¡it¡¡is£»¡¡according¡¡to¡¡what

has¡¡been¡¡said¡¡above£»¡¡a¡¡faculty¡¡of¡¡thought¡£¡¡Now¡¡thought¡¡is¡¡cognition¡¡by

means¡¡of¡¡conceptions¡£¡¡But¡¡conceptions£»¡¡as¡¡predicates¡¡of¡¡possible

judgements£»¡¡relate¡¡to¡¡some¡¡representation¡¡of¡¡a¡¡yet¡¡undetermined

object¡£¡¡Thus¡¡the¡¡conception¡¡of¡¡body¡¡indicates¡¡something¡­¡¡for

example£»¡¡metal¡­¡¡which¡¡can¡¡be¡¡cognized¡¡by¡¡means¡¡of¡¡that¡¡conception¡£

It¡¡is¡¡therefore¡¡a¡¡conception£»¡¡for¡¡the¡¡reason¡¡alone¡¡that¡¡other

representations¡¡are¡¡contained¡¡under¡¡it£»¡¡by¡¡means¡¡of¡¡which¡¡it¡¡can

relate¡¡to¡¡objects¡£¡¡It¡¡is¡¡therefore¡¡the¡¡predicate¡¡to¡¡a¡¡possible

judgement£»¡¡for¡¡example£º¡¡¡¨Every¡¡metal¡¡is¡¡a¡¡body¡£¡¨¡¡All¡¡the¡¡functions

of¡¡the¡¡understanding¡¡therefore¡¡can¡¡be¡¡discovered£»¡¡when¡¡we¡¡can

completely¡¡exhibit¡¡the¡¡functions¡¡of¡¡unity¡¡in¡¡judgements¡£¡¡And¡¡that¡¡this

may¡¡be¡¡effected¡¡very¡¡easily£»¡¡the¡¡following¡¡section¡¡will¡¡show¡£



¡¡¡¡SECTION¡¡II¡£¡¡Of¡¡the¡¡Logical¡¡Function¡¡of¡¡the¡¡Understanding¡¡in

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Judgements¡£¡¡SS¡¡5



¡¡¡¡If¡¡we¡¡abstract¡¡all¡¡the¡¡content¡¡of¡¡a¡¡judgement£»¡¡and¡¡consider¡¡only¡¡the

intellectual¡¡form¡¡thereof£»¡¡we¡¡find¡¡that¡¡the¡¡function¡¡of¡¡thought¡¡in¡¡a

judgement¡¡can¡¡be¡¡brought¡¡under¡¡four¡¡heads£»¡¡of¡¡which¡¡each¡¡contains

three¡¡momenta¡£¡¡These¡¡may¡¡be¡¡conveniently¡¡represented¡¡in¡¡the

following¡¡table£º



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantity¡¡of¡¡judgements

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Universal

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Particular

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Singular



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quality¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Relation

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Affirmative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Categorical

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Negative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Hypothetical

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Infinite¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Disjunctive



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Modality

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Problematical

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Assertorical

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Apodeictical



¡¡¡¡As¡¡this¡¡division¡¡appears¡¡to¡¡differ¡¡in¡¡some£»¡¡though¡¡not¡¡essential

points£»¡¡from¡¡the¡¡usual¡¡technique¡¡of¡¡logicians£»¡¡the¡¡following

observations£»¡¡for¡¡the¡¡prevention¡¡of¡¡otherwise¡¡possible

misunderstanding£»¡¡will¡¡not¡¡be¡¡without¡¡their¡¡use¡£

¡¡¡¡1¡£¡¡Logicians¡¡say£»¡¡with¡¡justice£»¡¡that¡¡in¡¡the¡¡use¡¡of¡¡judgements¡¡in

syllogisms£»¡¡singular¡¡judgements¡¡may¡¡be¡¡treated¡¡like¡¡universal¡¡ones¡£

For£»¡¡precisely¡¡because¡¡a¡¡singular¡¡judgement¡¡has¡¡no¡¡extent¡¡at¡¡all£»

its¡¡predicate¡¡cannot¡¡refer¡¡to¡¡a¡¡part¡¡of¡¡that¡¡which¡¡is¡¡contained¡¡in¡¡the

conception¡¡of¡¡the¡¡subject¡¡and¡¡be¡¡excluded¡¡from¡¡the¡¡rest¡£¡¡The¡¡predicate

is¡¡valid¡¡for¡¡the¡¡whole¡¡conception¡¡just¡¡as¡¡if¡¡it¡¡were¡¡a¡¡general

conception£»¡¡and¡¡had¡¡extent£»¡¡to¡¡the¡¡whole¡¡of¡¡which¡¡the¡¡predicate

applied¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡let¡¡us¡¡compare¡¡a¡¡singular¡¡with¡¡a¡¡general

judgement£»¡¡merely¡¡as¡¡a¡¡cognition£»¡¡in¡¡regard¡¡to¡¡quantity¡£¡¡The

singular¡¡judgement¡¡relates¡¡to¡¡the¡¡general¡¡one£»¡¡as¡¡unity¡¡to¡¡infinity£»

and¡¡is¡¡therefore¡¡in¡¡itself¡¡essentially¡¡different¡£¡¡Thus£»¡¡if¡¡we¡¡estimate

a¡¡singular¡¡judgement¡¡£¨judicium¡¡singulare£©¡¡not¡¡merely¡¡according¡¡to

its¡¡intrinsic¡¡validity¡¡as¡¡a¡¡judgement£»¡¡but¡¡also¡¡as¡¡a¡¡cognition

generally£»¡¡according¡¡to¡¡its¡¡quantity¡¡in¡¡comparison¡¡with¡¡that¡¡of

other¡¡cognitions£»¡¡it¡¡is¡¡then¡¡entirely¡¡different¡¡from¡¡a¡¡general

judgement¡¡£¨judicium¡¡commune£©£»¡¡and¡¡in¡¡a¡¡complete¡¡table¡¡of¡¡the¡¡momenta

of¡¡thought¡¡deserves¡¡a¡¡separate¡¡place¡­¡¡though£»¡¡indeed£»¡¡this¡¡would¡¡not

be¡¡necessary¡¡in¡¡a¡¡logic¡¡limited¡¡merely¡¡to¡¡the¡¡consideration¡¡of¡¡the¡¡use

of¡¡judgements¡¡in¡¡reference¡¡to¡¡each¡¡other¡£

¡¡¡¡2¡£¡¡In¡¡like¡¡manner£»¡¡in¡¡transcendental¡¡logic£»¡¡infinite¡¡must¡¡be

distinguished¡¡from¡¡affirmative¡¡judgements£»¡¡although¡¡in¡¡general¡¡logic

they¡¡are¡¡rightly¡¡enough¡¡classed¡¡under¡¡affirmative¡£¡¡General¡¡logic

abstracts¡¡all¡¡content¡¡of¡¡the¡¡predicate¡¡£¨though¡¡it¡¡be¡¡negative£©£»¡¡and

only¡¡considers¡¡whether¡¡the¡¡said¡¡predicate¡¡be¡¡affirmed¡¡or¡¡denied¡¡of¡¡the

subject¡£¡¡But¡¡transcendental¡¡logic¡¡considers¡¡also¡¡the¡¡worth¡¡or

content¡¡of¡¡this¡¡logical¡¡affirmation¡­¡¡an¡¡affirmation¡¡by¡¡means¡¡of¡¡a

merely¡¡negative¡¡predicate£»¡¡and¡¡inquires¡¡how¡¡much¡¡the¡¡sum¡¡total¡¡of

our¡¡cognition¡¡gains¡¡by¡¡this¡¡affirmation¡£¡¡For¡¡example£»¡¡if¡¡I¡¡say¡¡of

the¡¡soul£»¡¡¡¨It¡¡is¡¡not¡¡mortal¡¨¡­¡¡by¡¡this¡¡negative¡¡judgement¡¡I¡¡should¡¡at

least¡¡ward¡¡off¡¡error¡£¡¡Now£»¡¡by¡¡the¡¡proposition£»¡¡¡¨The¡¡soul¡¡is¡¡not

mortal£»¡¨¡¡I¡¡have£»¡¡in¡¡respect¡¡of¡¡the¡¡logical¡¡form£»¡¡really¡¡affirmed£»

inasmuch¡¡as¡¡I¡¡thereby¡¡place¡¡the¡¡soul¡¡in¡¡the¡¡unlimited¡¡sphere¡¡of

immortal¡¡beings¡£¡¡Now£»¡¡because¡¡of¡¡the¡¡whole¡¡sphere¡¡of¡¡possible

existences£»¡¡the¡¡mortal¡¡occupies¡¡one¡¡part£»¡¡and¡¡the¡¡immortal¡¡the

other£»¡¡neither¡¡more¡¡nor¡¡les
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡