°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
birthplace£»¡¡and¡¡analysing¡¡the¡¡pure¡¡use¡¡of¡¡this¡¡faculty¡£¡¡For¡¡this¡¡is
the¡¡proper¡¡duty¡¡of¡¡a¡¡transcendental¡¡philosophy£»¡¡what¡¡remains¡¡is¡¡the
logical¡¡treatment¡¡of¡¡the¡¡conceptions¡¡in¡¡philosophy¡¡in¡¡general¡£¡¡We
shall¡¡therefore¡¡follow¡¡up¡¡the¡¡pure¡¡conceptions¡¡even¡¡to¡¡their¡¡germs¡¡and
beginnings¡¡in¡¡the¡¡human¡¡understanding£»¡¡in¡¡which¡¡they¡¡lie£»¡¡until¡¡they
are¡¡developed¡¡on¡¡occasions¡¡presented¡¡by¡¡experience£»¡¡and£»¡¡freed¡¡by
the¡¡same¡¡understanding¡¡from¡¡the¡¡empirical¡¡conditions¡¡attaching¡¡to
them£»¡¡are¡¡set¡¡forth¡¡in¡¡their¡¡unalloyed¡¡purity¡£
¡¡¡¡CHAPTER¡¡I¡£¡¡Of¡¡the¡¡Transcendental¡¡Clue¡¡to¡¡the¡¡Discovery¡¡of¡¡all¡¡Pure
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Conceptions¡¡of¡¡the¡¡Understanding¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Introductory¡£¡¡SS¡¡3
¡¡¡¡When¡¡we¡¡call¡¡into¡¡play¡¡a¡¡faculty¡¡of¡¡cognition£»¡¡different¡¡conceptions
manifest¡¡themselves¡¡according¡¡to¡¡the¡¡different¡¡circumstances£»¡¡and¡¡make
known¡¡this¡¡faculty£»¡¡and¡¡assemble¡¡themselves¡¡into¡¡a¡¡more¡¡or¡¡less
extensive¡¡collection£»¡¡according¡¡to¡¡the¡¡time¡¡or¡¡penetration¡¡that¡¡has
been¡¡applied¡¡to¡¡the¡¡consideration¡¡of¡¡them¡£¡¡Where¡¡this¡¡process£»
conducted¡¡as¡¡it¡¡is¡¡mechanically£»¡¡so¡¡to¡¡speak£»¡¡will¡¡end£»¡¡cannot¡¡be
determined¡¡with¡¡certainty¡£¡¡Besides£»¡¡the¡¡conceptions¡¡which¡¡we
discover¡¡in¡¡this¡¡haphazard¡¡manner¡¡present¡¡themselves¡¡by¡¡no¡¡means¡¡in
order¡¡and¡¡systematic¡¡unity£»¡¡but¡¡are¡¡at¡¡last¡¡coupled¡¡together¡¡only
according¡¡to¡¡resemblances¡¡to¡¡each¡¡other£»¡¡and¡¡arranged¡¡in¡¡series£»
according¡¡to¡¡the¡¡quantity¡¡of¡¡their¡¡content£»¡¡from¡¡the¡¡simpler¡¡to¡¡the
more¡¡complex¡¡¡series¡¡which¡¡are¡¡anything¡¡but¡¡systematic£»¡¡though¡¡not
altogether¡¡without¡¡a¡¡certain¡¡kind¡¡of¡¡method¡¡in¡¡their¡¡construction¡£
¡¡¡¡Transcendental¡¡philosophy¡¡has¡¡the¡¡advantage£»¡¡and¡¡moreover¡¡the
duty£»¡¡of¡¡searching¡¡for¡¡its¡¡conceptions¡¡according¡¡to¡¡a¡¡principle£»
because¡¡these¡¡conceptions¡¡spring¡¡pure¡¡and¡¡unmixed¡¡out¡¡of¡¡the
understanding¡¡as¡¡an¡¡absolute¡¡unity£»¡¡and¡¡therefore¡¡must¡¡be¡¡connected
with¡¡each¡¡other¡¡according¡¡to¡¡one¡¡conception¡¡or¡¡idea¡£¡¡A¡¡connection¡¡of
this¡¡kind£»¡¡however£»¡¡furnishes¡¡us¡¡with¡¡a¡¡ready¡¡prepared¡¡rule£»¡¡by
which¡¡its¡¡proper¡¡place¡¡may¡¡be¡¡assigned¡¡to¡¡every¡¡pure¡¡conception¡¡of¡¡the
understanding£»¡¡and¡¡the¡¡completeness¡¡of¡¡the¡¡system¡¡of¡¡all¡¡be¡¡determined
a¡¡priori¡¡¡both¡¡which¡¡would¡¡otherwise¡¡have¡¡been¡¡dependent¡¡on¡¡mere
choice¡¡or¡¡chance¡£
¡¡¡¡SECTION¡¡1¡£¡¡Of¡¡defined¡¡above¡¡Use¡¡of¡¡understanding¡¡in¡¡General¡£¡¡SS¡¡4
¡¡¡¡The¡¡understanding¡¡was¡¡defined¡¡above¡¡only¡¡negatively£»¡¡as¡¡a
non¡sensuous¡¡faculty¡¡of¡¡cognition¡£¡¡Now£»¡¡independently¡¡of
sensibility£»¡¡we¡¡cannot¡¡possibly¡¡have¡¡any¡¡intuition£»¡¡consequently£»
the¡¡understanding¡¡is¡¡no¡¡faculty¡¡of¡¡intuition¡£¡¡But¡¡besides¡¡intuition
there¡¡is¡¡no¡¡other¡¡mode¡¡of¡¡cognition£»¡¡except¡¡through¡¡conceptions£»
consequently£»¡¡the¡¡cognition¡¡of¡¡every£»¡¡at¡¡least¡¡of¡¡every¡¡human£»
understanding¡¡is¡¡a¡¡cognition¡¡through¡¡conceptions¡¡¡not¡¡intuitive£»¡¡but
discursive¡£¡¡All¡¡intuitions£»¡¡as¡¡sensuous£»¡¡depend¡¡on¡¡affections£»
conceptions£»¡¡therefore£»¡¡upon¡¡functions¡£¡¡By¡¡the¡¡word¡¡function¡¡I
understand¡¡the¡¡unity¡¡of¡¡the¡¡act¡¡of¡¡arranging¡¡diverse¡¡representations
under¡¡one¡¡common¡¡representation¡£¡¡Conceptions£»¡¡then£»¡¡are¡¡based¡¡on¡¡the
spontaneity¡¡of¡¡thought£»¡¡as¡¡sensuous¡¡intuitions¡¡are¡¡on¡¡the
receptivity¡¡of¡¡impressions¡£¡¡Now£»¡¡the¡¡understanding¡¡cannot¡¡make¡¡any
other¡¡use¡¡of¡¡these¡¡conceptions¡¡than¡¡to¡¡judge¡¡by¡¡means¡¡of¡¡them¡£¡¡As¡¡no
representation£»¡¡except¡¡an¡¡intuition£»¡¡relates¡¡immediately¡¡to¡¡its
object£»¡¡a¡¡conception¡¡never¡¡relates¡¡immediately¡¡to¡¡an¡¡object£»¡¡but
only¡¡to¡¡some¡¡other¡¡representation¡¡thereof£»¡¡be¡¡that¡¡an¡¡intuition¡¡or
itself¡¡a¡¡conception¡£¡¡A¡¡judgement£»¡¡therefore£»¡¡is¡¡the¡¡mediate
cognition¡¡of¡¡an¡¡object£»¡¡consequently¡¡the¡¡representation¡¡of¡¡a
representation¡¡of¡¡it¡£¡¡In¡¡every¡¡judgement¡¡there¡¡is¡¡a¡¡conception¡¡which
applies¡¡to£»¡¡and¡¡is¡¡valid¡¡for¡¡many¡¡other¡¡conceptions£»¡¡and¡¡which¡¡among
these¡¡comprehends¡¡also¡¡a¡¡given¡¡representation£»¡¡this¡¡last¡¡being
immediately¡¡connected¡¡with¡¡an¡¡object¡£¡¡For¡¡example£»¡¡in¡¡the¡¡judgement¡
¡¨All¡¡bodies¡¡are¡¡divisible£»¡¨¡¡our¡¡conception¡¡of¡¡divisible¡¡applies¡¡to
various¡¡other¡¡conceptions£»¡¡among¡¡these£»¡¡however£»¡¡it¡¡is¡¡here
particularly¡¡applied¡¡to¡¡the¡¡conception¡¡of¡¡body£»¡¡and¡¡this¡¡conception¡¡of
body¡¡relates¡¡to¡¡certain¡¡phenomena¡¡which¡¡occur¡¡to¡¡us¡£¡¡These¡¡objects£»
therefore£»¡¡are¡¡mediately¡¡represented¡¡by¡¡the¡¡conception¡¡of
divisibility¡£¡¡All¡¡judgements£»¡¡accordingly£»¡¡are¡¡functions¡¡of¡¡unity¡¡in
our¡¡representations£»¡¡inasmuch¡¡as£»¡¡instead¡¡of¡¡an¡¡immediate£»¡¡a¡¡higher
representation£»¡¡which¡¡comprises¡¡this¡¡and¡¡various¡¡others£»¡¡is¡¡used¡¡for
our¡¡cognition¡¡of¡¡the¡¡object£»¡¡and¡¡thereby¡¡many¡¡possible¡¡cognitions
are¡¡collected¡¡into¡¡one¡£¡¡But¡¡we¡¡can¡¡reduce¡¡all¡¡acts¡¡of¡¡the
understanding¡¡to¡¡judgements£»¡¡so¡¡that¡¡understanding¡¡may¡¡be
represented¡¡as¡¡the¡¡faculty¡¡of¡¡judging¡£¡¡For¡¡it¡¡is£»¡¡according¡¡to¡¡what
has¡¡been¡¡said¡¡above£»¡¡a¡¡faculty¡¡of¡¡thought¡£¡¡Now¡¡thought¡¡is¡¡cognition¡¡by
means¡¡of¡¡conceptions¡£¡¡But¡¡conceptions£»¡¡as¡¡predicates¡¡of¡¡possible
judgements£»¡¡relate¡¡to¡¡some¡¡representation¡¡of¡¡a¡¡yet¡¡undetermined
object¡£¡¡Thus¡¡the¡¡conception¡¡of¡¡body¡¡indicates¡¡something¡¡¡for
example£»¡¡metal¡¡¡which¡¡can¡¡be¡¡cognized¡¡by¡¡means¡¡of¡¡that¡¡conception¡£
It¡¡is¡¡therefore¡¡a¡¡conception£»¡¡for¡¡the¡¡reason¡¡alone¡¡that¡¡other
representations¡¡are¡¡contained¡¡under¡¡it£»¡¡by¡¡means¡¡of¡¡which¡¡it¡¡can
relate¡¡to¡¡objects¡£¡¡It¡¡is¡¡therefore¡¡the¡¡predicate¡¡to¡¡a¡¡possible
judgement£»¡¡for¡¡example£º¡¡¡¨Every¡¡metal¡¡is¡¡a¡¡body¡£¡¨¡¡All¡¡the¡¡functions
of¡¡the¡¡understanding¡¡therefore¡¡can¡¡be¡¡discovered£»¡¡when¡¡we¡¡can
completely¡¡exhibit¡¡the¡¡functions¡¡of¡¡unity¡¡in¡¡judgements¡£¡¡And¡¡that¡¡this
may¡¡be¡¡effected¡¡very¡¡easily£»¡¡the¡¡following¡¡section¡¡will¡¡show¡£
¡¡¡¡SECTION¡¡II¡£¡¡Of¡¡the¡¡Logical¡¡Function¡¡of¡¡the¡¡Understanding¡¡in
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Judgements¡£¡¡SS¡¡5
¡¡¡¡If¡¡we¡¡abstract¡¡all¡¡the¡¡content¡¡of¡¡a¡¡judgement£»¡¡and¡¡consider¡¡only¡¡the
intellectual¡¡form¡¡thereof£»¡¡we¡¡find¡¡that¡¡the¡¡function¡¡of¡¡thought¡¡in¡¡a
judgement¡¡can¡¡be¡¡brought¡¡under¡¡four¡¡heads£»¡¡of¡¡which¡¡each¡¡contains
three¡¡momenta¡£¡¡These¡¡may¡¡be¡¡conveniently¡¡represented¡¡in¡¡the
following¡¡table£º
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantity¡¡of¡¡judgements
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Universal
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Particular
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Singular
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quality¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Relation
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Affirmative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Categorical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Negative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Hypothetical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Infinite¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Disjunctive
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Modality
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Problematical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Assertorical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Apodeictical
¡¡¡¡As¡¡this¡¡division¡¡appears¡¡to¡¡differ¡¡in¡¡some£»¡¡though¡¡not¡¡essential
points£»¡¡from¡¡the¡¡usual¡¡technique¡¡of¡¡logicians£»¡¡the¡¡following
observations£»¡¡for¡¡the¡¡prevention¡¡of¡¡otherwise¡¡possible
misunderstanding£»¡¡will¡¡not¡¡be¡¡without¡¡their¡¡use¡£
¡¡¡¡1¡£¡¡Logicians¡¡say£»¡¡with¡¡justice£»¡¡that¡¡in¡¡the¡¡use¡¡of¡¡judgements¡¡in
syllogisms£»¡¡singular¡¡judgements¡¡may¡¡be¡¡treated¡¡like¡¡universal¡¡ones¡£
For£»¡¡precisely¡¡because¡¡a¡¡singular¡¡judgement¡¡has¡¡no¡¡extent¡¡at¡¡all£»
its¡¡predicate¡¡cannot¡¡refer¡¡to¡¡a¡¡part¡¡of¡¡that¡¡which¡¡is¡¡contained¡¡in¡¡the
conception¡¡of¡¡the¡¡subject¡¡and¡¡be¡¡excluded¡¡from¡¡the¡¡rest¡£¡¡The¡¡predicate
is¡¡valid¡¡for¡¡the¡¡whole¡¡conception¡¡just¡¡as¡¡if¡¡it¡¡were¡¡a¡¡general
conception£»¡¡and¡¡had¡¡extent£»¡¡to¡¡the¡¡whole¡¡of¡¡which¡¡the¡¡predicate
applied¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡let¡¡us¡¡compare¡¡a¡¡singular¡¡with¡¡a¡¡general
judgement£»¡¡merely¡¡as¡¡a¡¡cognition£»¡¡in¡¡regard¡¡to¡¡quantity¡£¡¡The
singular¡¡judgement¡¡relates¡¡to¡¡the¡¡general¡¡one£»¡¡as¡¡unity¡¡to¡¡infinity£»
and¡¡is¡¡therefore¡¡in¡¡itself¡¡essentially¡¡different¡£¡¡Thus£»¡¡if¡¡we¡¡estimate
a¡¡singular¡¡judgement¡¡£¨judicium¡¡singulare£©¡¡not¡¡merely¡¡according¡¡to
its¡¡intrinsic¡¡validity¡¡as¡¡a¡¡judgement£»¡¡but¡¡also¡¡as¡¡a¡¡cognition
generally£»¡¡according¡¡to¡¡its¡¡quantity¡¡in¡¡comparison¡¡with¡¡that¡¡of
other¡¡cognitions£»¡¡it¡¡is¡¡then¡¡entirely¡¡different¡¡from¡¡a¡¡general
judgement¡¡£¨judicium¡¡commune£©£»¡¡and¡¡in¡¡a¡¡complete¡¡table¡¡of¡¡the¡¡momenta
of¡¡thought¡¡deserves¡¡a¡¡separate¡¡place¡¡¡though£»¡¡indeed£»¡¡this¡¡would¡¡not
be¡¡necessary¡¡in¡¡a¡¡logic¡¡limited¡¡merely¡¡to¡¡the¡¡consideration¡¡of¡¡the¡¡use
of¡¡judgements¡¡in¡¡reference¡¡to¡¡each¡¡other¡£
¡¡¡¡2¡£¡¡In¡¡like¡¡manner£»¡¡in¡¡transcendental¡¡logic£»¡¡infinite¡¡must¡¡be
distinguished¡¡from¡¡affirmative¡¡judgements£»¡¡although¡¡in¡¡general¡¡logic
they¡¡are¡¡rightly¡¡enough¡¡classed¡¡under¡¡affirmative¡£¡¡General¡¡logic
abstracts¡¡all¡¡content¡¡of¡¡the¡¡predicate¡¡£¨though¡¡it¡¡be¡¡negative£©£»¡¡and
only¡¡considers¡¡whether¡¡the¡¡said¡¡predicate¡¡be¡¡affirmed¡¡or¡¡denied¡¡of¡¡the
subject¡£¡¡But¡¡transcendental¡¡logic¡¡considers¡¡also¡¡the¡¡worth¡¡or
content¡¡of¡¡this¡¡logical¡¡affirmation¡¡¡an¡¡affirmation¡¡by¡¡means¡¡of¡¡a
merely¡¡negative¡¡predicate£»¡¡and¡¡inquires¡¡how¡¡much¡¡the¡¡sum¡¡total¡¡of
our¡¡cognition¡¡gains¡¡by¡¡this¡¡affirmation¡£¡¡For¡¡example£»¡¡if¡¡I¡¡say¡¡of
the¡¡soul£»¡¡¡¨It¡¡is¡¡not¡¡mortal¡¨¡¡¡by¡¡this¡¡negative¡¡judgement¡¡I¡¡should¡¡at
least¡¡ward¡¡off¡¡error¡£¡¡Now£»¡¡by¡¡the¡¡proposition£»¡¡¡¨The¡¡soul¡¡is¡¡not
mortal£»¡¨¡¡I¡¡have£»¡¡in¡¡respect¡¡of¡¡the¡¡logical¡¡form£»¡¡really¡¡affirmed£»
inasmuch¡¡as¡¡I¡¡thereby¡¡place¡¡the¡¡soul¡¡in¡¡the¡¡unlimited¡¡sphere¡¡of
immortal¡¡beings¡£¡¡Now£»¡¡because¡¡of¡¡the¡¡whole¡¡sphere¡¡of¡¡possible
existences£»¡¡the¡¡mortal¡¡occupies¡¡one¡¡part£»¡¡and¡¡the¡¡immortal¡¡the
other£»¡¡neither¡¡more¡¡nor¡¡les