°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
19¡£¡¡¡¡I¡¡have¡¡dwelt¡¡on¡¡the¡¡fundamental¡¡ideas¡¡of¡¡Lamprecht£»¡¡because¡¡they¡¡are¡¡not¡¡yet¡¡widely¡¡known¡¡in¡¡England£»¡¡and¡¡because¡¡his¡¡system¡¡is¡¡the¡¡ablest¡¡product¡¡of¡¡the¡¡sociological¡¡school¡¡of¡¡historians¡£¡¡¡¡It¡¡carries¡¡the¡¡more¡¡weight¡¡as¡¡its¡¡author¡¡himself¡¡is¡¡a¡¡historical¡¡specialist£»¡¡and¡¡his¡¡historical¡¡syntheses¡¡deserve¡¡the¡¡most¡¡careful¡¡consideration¡£¡¡¡¡But¡¡there¡¡is¡¡much¡¡in¡¡the¡¡process¡¡of¡¡development¡¡which¡¡on¡¡such¡¡assumptions¡¡is¡¡not¡¡explained£»¡¡especially¡¡the¡¡initiative¡¡of¡¡individuals¡£¡¡¡¡Historical¡¡development¡¡does¡¡not¡¡proceed¡¡in¡¡a¡¡right¡¡line£»¡¡without¡¡the¡¡choice¡¡of¡¡diverging¡£¡¡¡¡Again¡¡and¡¡again£»¡¡several¡¡roads¡¡are¡¡open¡¡to¡¡it£»¡¡of¡¡which¡¡it¡¡chooses¡¡onewhy£¿¡¡¡¡On¡¡Lamprecht's¡¡method£»¡¡we¡¡may¡¡be¡¡able¡¡to¡¡assign¡¡the¡¡conditions¡¡which¡¡limit¡¡the¡¡psychical¡¡activity¡¡of¡¡men¡¡at¡¡a¡¡particular¡¡stage¡¡of¡¡evolution£»¡¡but¡¡within¡¡those¡¡limits¡¡the¡¡individual¡¡has¡¡so¡¡many¡¡options£»¡¡such¡¡a¡¡wide¡¡room¡¡for¡¡moving£»¡¡that¡¡the¡¡definition¡¡of¡¡those¡¡conditions£»¡¡the¡¡¡¨psychical¡¡diapasons£»¡¨¡¡is¡¡only¡¡part¡¡of¡¡the¡¡explanation¡¡of¡¡the¡¡particular¡¡development¡£¡¡¡¡The¡¡heel¡¡of¡¡Achilles¡¡in¡¡all¡¡historical¡¡speculations¡¡of¡¡this¡¡class¡¡has¡¡been¡¡the¡¡role¡¡of¡¡the¡¡individual¡£
The¡¡increasing¡¡prominence¡¡of¡¡economic¡¡history¡¡has¡¡tended¡¡to¡¡encourage¡¡the¡¡view¡¡that¡¡history¡¡can¡¡be¡¡explained¡¡in¡¡terms¡¡of¡¡general¡¡concepts¡¡or¡¡types¡£¡¡¡¡Marx¡¡and¡¡his¡¡school¡¡based¡¡their¡¡theory¡¡of¡¡human¡¡development¡¡on¡¡the¡¡conditions¡¡of¡¡production£»¡¡by¡¡which£»¡¡according¡¡to¡¡them£»¡¡all¡¡social¡¡movements¡¡and¡¡historical¡¡changes¡¡are¡¡entirely¡¡controlled¡£¡¡¡¡The¡¡leading¡¡part¡¡which¡¡economic¡¡factors¡¡play¡¡in¡¡Lamprecht's¡¡system¡¡is¡¡significant£»¡¡illustrating¡¡the¡¡fact¡¡that¡¡economic¡¡changes¡¡admit¡¡most¡¡readily¡¡this¡¡kind¡¡of¡¡treatment£»¡¡because¡¡they¡¡have¡¡been¡¡less¡¡subject¡¡to¡¡direction¡¡or¡¡interference¡¡by¡¡individual¡¡pioneers¡£
Perhaps¡¡it¡¡may¡¡be¡¡thought¡¡that¡¡the¡¡conception¡¡of¡¡SOCIAL¡¡ENVIRONMENT¡¡£¨essentially¡¡psychical£©£»¡¡on¡¡which¡¡Lamprecht's¡¡¡¨psychical¡¡diapasons¡¨¡¡depend£»¡¡is¡¡the¡¡most¡¡valuable¡¡and¡¡fertile¡¡conception¡¡that¡¡the¡¡historian¡¡owes¡¡to¡¡the¡¡suggestion¡¡of¡¡the¡¡science¡¡of¡¡biologythe¡¡conception¡¡of¡¡all¡¡particular¡¡historical¡¡actions¡¡and¡¡movements¡¡as¡¡£¨1£©¡¡related¡¡to¡¡and¡¡conditioned¡¡by¡¡the¡¡social¡¡environment£»¡¡and¡¡£¨2£©¡¡gradually¡¡bringing¡¡about¡¡a¡¡transformation¡¡of¡¡that¡¡environment¡£¡¡¡¡But¡¡no¡¡given¡¡transformation¡¡can¡¡be¡¡proved¡¡to¡¡be¡¡necessary¡¡£¨pre¡determined£©¡£¡¡¡¡And¡¡types¡¡of¡¡development¡¡do¡¡not¡¡represent¡¡laws£»¡¡their¡¡meaning¡¡and¡¡value¡¡lie¡¡in¡¡the¡¡help¡¡they¡¡may¡¡give¡¡to¡¡the¡¡historian£»¡¡in¡¡investigating¡¡a¡¡certain¡¡period¡¡of¡¡civilisation£»¡¡to¡¡enable¡¡him¡¡to¡¡discover¡¡the¡¡interrelations¡¡among¡¡the¡¡diverse¡¡features¡¡which¡¡it¡¡presents¡£¡¡¡¡They¡¡are£»¡¡as¡¡some¡¡one¡¡has¡¡said£»¡¡an¡¡instrument¡¡of¡¡heuretic¡¡method¡£
20¡£¡¡¡¡The¡¡men¡¡engaged¡¡in¡¡special¡¡historical¡¡researcheswhich¡¡have¡¡been¡¡pursued¡¡unremittingly¡¡for¡¡a¡¡century¡¡past£»¡¡according¡¡to¡¡scientific¡¡methods¡¡of¡¡investigating¡¡evidence¡¡£¨initiated¡¡by¡¡Wolf£»¡¡Niebuhr£»¡¡Ranke£©have¡¡for¡¡the¡¡most¡¡part¡¡worked¡¡on¡¡the¡¡assumptions¡¡of¡¡genetic¡¡history¡¡or¡¡at¡¡least¡¡followed¡¡in¡¡the¡¡footsteps¡¡of¡¡those¡¡who¡¡fully¡¡grasped¡¡the¡¡genetic¡¡point¡¡of¡¡view¡£¡¡¡¡But¡¡their¡¡aim¡¡has¡¡been¡¡to¡¡collect¡¡and¡¡sift¡¡evidence£»¡¡and¡¡determine¡¡particular¡¡facts£»¡¡comparatively¡¡few¡¡have¡¡given¡¡serious¡¡thought¡¡to¡¡the¡¡lines¡¡of¡¡research¡¡and¡¡the¡¡speculations¡¡which¡¡have¡¡been¡¡considered¡¡in¡¡this¡¡paper¡£¡¡¡¡They¡¡have¡¡been¡¡reasonably¡¡shy¡¡of¡¡compromising¡¡their¡¡work¡¡by¡¡applying¡¡theories¡¡which¡¡are¡¡still¡¡much¡¡debated¡¡and¡¡immature¡£¡¡¡¡But¡¡historiography¡¡cannot¡¡permanently¡¡evade¡¡the¡¡questions¡¡raised¡¡by¡¡these¡¡theories¡£¡¡¡¡One¡¡may¡¡venture¡¡to¡¡say¡¡that¡¡no¡¡historical¡¡change¡¡or¡¡transformation¡¡will¡¡be¡¡fully¡¡understood¡¡until¡¡it¡¡is¡¡explained¡¡how¡¡social¡¡environment¡¡acted¡¡on¡¡the¡¡individual¡¡components¡¡of¡¡the¡¡society¡¡£¨both¡¡immediately¡¡and¡¡by¡¡heredity£©£»¡¡and¡¡how¡¡the¡¡individuals¡¡reacted¡¡upon¡¡their¡¡environment¡£¡¡¡¡The¡¡problem¡¡is¡¡psychical£»¡¡but¡¡it¡¡is¡¡analogous¡¡to¡¡the¡¡main¡¡problem¡¡of¡¡the¡¡biologist¡£
XXVIII¡£¡¡¡¡THE¡¡GENESIS¡¡OF¡¡DOUBLE¡¡STARS¡£
By¡¡SIR¡¡GEORGE¡¡DARWIN£»¡¡K¡£C¡£B¡££»¡¡F¡£R¡£S¡£¡¡Plumian¡¡Professor¡¡of¡¡Astronomy¡¡and¡¡Experimental¡¡Philosophy¡¡in¡¡the¡¡University¡¡of¡¡Cambridge¡£
In¡¡ordinary¡¡speech¡¡a¡¡system¡¡of¡¡any¡¡sort¡¡is¡¡said¡¡to¡¡be¡¡stable¡¡when¡¡it¡¡cannot¡¡be¡¡upset¡¡easily£»¡¡but¡¡the¡¡meaning¡¡attached¡¡to¡¡the¡¡word¡¡is¡¡usually¡¡somewhat¡¡vague¡£¡¡¡¡It¡¡is¡¡hardly¡¡surprising¡¡that¡¡this¡¡should¡¡be¡¡the¡¡case£»¡¡when¡¡it¡¡is¡¡only¡¡within¡¡the¡¡last¡¡thirty¡¡years£»¡¡and¡¡principally¡¡through¡¡the¡¡investigations¡¡of¡¡M¡£¡¡Poincare£»¡¡that¡¡the¡¡conception¡¡of¡¡stability¡¡has£»¡¡even¡¡for¡¡physicists£»¡¡assumed¡¡a¡¡definiteness¡¡and¡¡clearness¡¡in¡¡which¡¡it¡¡was¡¡previously¡¡lacking¡£¡¡¡¡The¡¡laws¡¡which¡¡govern¡¡stability¡¡hold¡¡good¡¡in¡¡regions¡¡of¡¡the¡¡greatest¡¡diversity£»¡¡they¡¡apply¡¡to¡¡the¡¡motion¡¡of¡¡planets¡¡round¡¡the¡¡sun£»¡¡to¡¡the¡¡internal¡¡arrangement¡¡of¡¡those¡¡minute¡¡corpuscles¡¡of¡¡which¡¡each¡¡chemical¡¡atom¡¡is¡¡constructed£»¡¡and¡¡to¡¡the¡¡forms¡¡of¡¡celestial¡¡bodies¡£¡¡¡¡In¡¡the¡¡present¡¡essay¡¡I¡¡shall¡¡attempt¡¡to¡¡consider¡¡the¡¡laws¡¡of¡¡stability¡¡as¡¡relating¡¡to¡¡the¡¡last¡¡case£»¡¡and¡¡shall¡¡discuss¡¡the¡¡succession¡¡of¡¡shapes¡¡which¡¡may¡¡be¡¡assumed¡¡by¡¡celestial¡¡bodies¡¡in¡¡the¡¡course¡¡of¡¡their¡¡evolution¡£¡¡¡¡I¡¡believe¡¡further¡¡that¡¡homologous¡¡conceptions¡¡are¡¡applicable¡¡in¡¡the¡¡consideration¡¡of¡¡the¡¡transmutations¡¡of¡¡the¡¡various¡¡forms¡¡of¡¡animal¡¡and¡¡of¡¡vegetable¡¡life¡¡and¡¡in¡¡other¡¡regions¡¡of¡¡thought¡£¡¡¡¡Even¡¡if¡¡some¡¡of¡¡my¡¡readers¡¡should¡¡think¡¡that¡¡what¡¡I¡¡shall¡¡say¡¡on¡¡this¡¡head¡¡is¡¡fanciful£»¡¡yet¡¡at¡¡least¡¡the¡¡exposition¡¡will¡¡serve¡¡to¡¡illustrate¡¡the¡¡meaning¡¡to¡¡be¡¡attached¡¡to¡¡the¡¡laws¡¡of¡¡stability¡¡in¡¡the¡¡physical¡¡universe¡£
I¡¡propose£»¡¡therefore£»¡¡to¡¡begin¡¡this¡¡essay¡¡by¡¡a¡¡sketch¡¡of¡¡the¡¡principles¡¡of¡¡stability¡¡as¡¡they¡¡are¡¡now¡¡formulated¡¡by¡¡physicists¡£
I¡£
If¡¡a¡¡slight¡¡impulse¡¡be¡¡imparted¡¡to¡¡a¡¡system¡¡in¡¡equilibrium¡¡one¡¡of¡¡two¡¡consequences¡¡must¡¡ensue£»¡¡either¡¡small¡¡oscillations¡¡of¡¡the¡¡system¡¡will¡¡be¡¡started£»¡¡or¡¡the¡¡disturbance¡¡will¡¡increase¡¡without¡¡limit¡¡and¡¡the¡¡arrangement¡¡of¡¡the¡¡system¡¡will¡¡be¡¡completely¡¡changed¡£¡¡¡¡Thus¡¡a¡¡stick¡¡may¡¡be¡¡in¡¡equilibrium¡¡either¡¡when¡¡it¡¡hangs¡¡from¡¡a¡¡peg¡¡or¡¡when¡¡it¡¡is¡¡balanced¡¡on¡¡its¡¡point¡£¡¡¡¡If¡¡in¡¡the¡¡first¡¡case¡¡the¡¡stick¡¡is¡¡touched¡¡it¡¡will¡¡swing¡¡to¡¡and¡¡fro£»¡¡but¡¡in¡¡the¡¡second¡¡case¡¡it¡¡will¡¡topple¡¡over¡£¡¡¡¡The¡¡first¡¡position¡¡is¡¡a¡¡stable¡¡one£»¡¡the¡¡second¡¡is¡¡unstable¡£¡¡¡¡But¡¡this¡¡case¡¡is¡¡too¡¡simple¡¡to¡¡illustrate¡¡all¡¡that¡¡is¡¡implied¡¡by¡¡stability£»¡¡and¡¡we¡¡must¡¡consider¡¡cases¡¡of¡¡stable¡¡and¡¡of¡¡unstable¡¡motion¡£¡¡¡¡Imagine¡¡a¡¡satellite¡¡and¡¡its¡¡planet£»¡¡and¡¡consider¡¡each¡¡of¡¡them¡¡to¡¡be¡¡of¡¡indefinitely¡¡small¡¡size£»¡¡in¡¡fact¡¡particles£»¡¡then¡¡the¡¡satellite¡¡revolves¡¡round¡¡its¡¡planet¡¡in¡¡an¡¡ellipse¡£¡¡¡¡A¡¡small¡¡disturbance¡¡imparted¡¡to¡¡the¡¡satellite¡¡will¡¡only¡¡change¡¡the¡¡ellipse¡¡to¡¡a¡¡small¡¡amount£»¡¡and¡¡so¡¡the¡¡motion¡¡is¡¡said¡¡to¡¡be¡¡stable¡£¡¡¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡the¡¡disturbance¡¡were¡¡to¡¡make¡¡the¡¡satellite¡¡depart¡¡from¡¡its¡¡initial¡¡elliptic¡¡orbit¡¡in¡¡ever¡¡widening¡¡circuits£»¡¡the¡¡motion¡¡would¡¡be¡¡unstable¡£¡¡¡¡This¡¡case¡¡affords¡¡an¡¡example¡¡of¡¡stable¡¡motion£»¡¡but¡¡I¡¡have¡¡adduced¡¡it¡¡principally¡¡with¡¡the¡¡object¡¡of¡¡illustrating¡¡another¡¡point¡¡not¡¡immediately¡¡connected¡¡with¡¡stability£»¡¡but¡¡important¡¡to¡¡a¡¡proper¡¡comprehension¡¡of¡¡the¡¡theory¡¡of¡¡stability¡£
The¡¡motion¡¡of¡¡a¡¡satellite¡¡about¡¡its¡¡planet¡¡is¡¡one¡¡of¡¡revolution¡¡or¡¡rotation¡£¡¡¡¡When¡¡the¡¡satellite¡¡moves¡¡in¡¡an¡¡ellipse¡¡of¡¡any¡¡given¡¡degree¡¡of¡¡eccentricity£»¡¡there¡¡is¡¡a¡¡certain¡¡amount¡¡of¡¡rotation¡¡in¡¡the¡¡system£»¡¡technically¡¡called¡¡rotational¡¡momentum£»¡¡and¡¡it¡¡is¡¡always¡¡the¡¡same¡¡at¡¡every¡¡part¡¡of¡¡the¡¡orbit¡£¡¡¡¡£¨Moment¡¡of¡¡momentum¡¡or¡¡rotational¡¡momentum¡¡is¡¡measured¡¡by¡¡the¡¡momentum¡¡of¡¡the¡¡satellite¡¡multiplied¡¡by¡¡the¡¡perpendicular¡¡from¡¡the¡¡planet¡¡on¡¡to¡¡the¡¡direction¡¡of¡¡the¡¡path¡¡of¡¡the¡¡satellite¡¡at¡¡any¡¡instant¡££©
Now¡¡if¡¡we¡¡consider¡¡all¡¡the¡¡possible¡¡elliptic¡¡orbits¡¡of¡¡a¡¡satellite¡¡about¡¡its¡¡planet¡¡which¡¡have¡¡the¡¡same¡¡amount¡¡of¡¡¡¨rotational¡¡momentum£»¡¨¡¡we¡¡find¡¡that¡¡the¡¡major¡¡axis¡¡of¡¡the¡¡ellipse¡¡described¡¡will¡¡be¡¡different¡¡according¡¡to¡¡the¡¡amount¡¡of¡¡flattening¡¡£¨or¡¡the¡¡eccentricity£©¡¡of¡¡the¡¡ellipse¡¡described¡£¡¡¡¡A¡¡figure¡¡titled¡¡¡¨A¡¡'family'¡¡of¡¡elliptic¡¡orbits¡¡with¡¡constant¡¡rotational¡¡momentum¡¨¡¡£¨Fig¡£¡¡1£©¡¡illustrates¡¡for¡¡a¡¡given¡¡planet¡¡and¡¡satellite¡¡all¡¡such¡¡orbits¡¡with¡¡constant¡¡rotational¡¡momentum£»¡¡and¡¡with¡¡all¡¡the¡¡major¡¡axes¡¡in¡¡the¡¡same¡¡direction¡£¡¡¡¡It¡¡will¡¡be¡¡observed¡¡that¡¡there¡¡is¡¡a¡¡continuous¡¡transformation¡¡from¡¡one¡¡orbit¡¡to¡¡the¡¡next£»¡¡and¡¡that¡¡the¡¡whole¡¡forms¡¡a¡¡consecutive¡¡group£»¡¡called¡¡by¡¡mathematicians¡¡¡¨a¡¡family¡¨¡¡of¡¡orbits¡£¡¡¡¡In¡¡this¡¡case¡¡the¡¡rotational¡¡momentum¡¡is¡¡constant¡¡and¡¡the¡¡position¡¡of¡¡any¡¡orbit¡¡in¡¡the¡¡family¡¡is¡¡determined¡¡by¡¡the¡¡length¡¡of¡¡the¡¡major¡¡axis¡¡of¡¡the¡¡ellipse£»¡¡the¡¡classification¡¡is¡¡according¡¡to¡¡the¡¡major¡¡axis£»¡¡but¡¡it¡¡might¡¡have¡¡been¡¡made¡¡according¡¡to¡¡anything¡¡else¡¡which¡¡would¡¡cause¡¡the¡¡orbit¡¡to¡¡be¡¡exactly¡¡determinate¡£
I¡¡shall¡¡come¡¡later¡¡to¡¡the¡¡classification¡¡of¡¡all¡¡possible¡¡forms¡¡of¡¡ideal¡¡liquid¡¡stars£»¡¡which¡¡have¡¡the¡¡same¡¡amount¡¡of¡¡rotational¡¡momentum£»¡¡and¡¡the¡¡classification¡¡will¡¡then¡¡be¡¡made¡¡according¡¡to¡¡their¡¡densities£»¡¡but¡¡the¡¡idea¡¡of¡¡orderly¡¡arrangement¡¡in¡¡a¡¡¡¨family¡¨¡¡is¡¡just¡¡the¡¡same¡£
We¡¡thus¡¡arrive¡¡at¡¡the¡¡conception¡¡of¡¡a¡¡definite¡¡type¡¡of¡¡motion£»¡¡with¡¡a¡¡constant¡¡amount¡¡of¡¡rotational¡¡momentum£»¡¡and¡¡a¡¡classification¡¡of¡¡all¡¡members¡¡of¡¡the¡¡family£»¡¡formed¡¡by¡¡all¡¡possible¡¡motions¡¡of¡¡that¡¡type£»¡¡according¡¡to¡¡the¡¡value¡¡of¡¡some¡¡measurable¡¡quantity¡¡£¨this¡¡will¡¡hereafter¡¡be¡¡density£©¡¡which¡¡determines¡¡the¡¡motion¡¡exactly¡£¡¡¡¡In¡¡the¡¡particular¡¡case¡¡of¡¡the¡¡elliptic¡¡motion¡¡used¡¡for¡¡illustration¡¡the¡¡motion¡¡was¡¡stable£»¡¡but¡¡other¡¡cases¡¡of¡¡motion¡¡might¡¡be¡¡adduced¡¡in¡¡which¡¡the¡¡motion¡¡would¡¡be¡¡unstable£»¡¡and¡¡it¡¡would¡¡be¡¡found¡¡that¡¡classification¡¡in¡¡a¡¡family¡¡and¡¡specification¡¡by¡¡some¡¡measurable¡¡quantity¡¡would¡¡be¡¡equally¡¡applicable¡£
A¡¡complex¡¡mechanical¡¡system¡¡may¡¡be¡¡capable¡¡of¡¡motion¡¡in¡¡several¡¡dis