ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
¾ÅÉ«Êé¼® ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

darwin and modern science-µÚ168ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




A¡¡complex¡¡mechanical¡¡system¡¡may¡¡be¡¡capable¡¡of¡¡motion¡¡in¡¡several¡¡distinct¡¡modes¡¡or¡¡types£»¡¡and¡¡the¡¡motions¡¡corresponding¡¡to¡¡each¡¡such¡¡type¡¡may¡¡be¡¡arranged¡¡as¡¡before¡¡in¡¡families¡£¡¡¡¡For¡¡the¡¡sake¡¡of¡¡simplicity¡¡I¡¡will¡¡suppose¡¡that¡¡only¡¡two¡¡types¡¡are¡¡possible£»¡¡so¡¡that¡¡there¡¡will¡¡only¡¡be¡¡two¡¡families£»¡¡and¡¡the¡¡rotational¡¡momentum¡¡is¡¡to¡¡be¡¡constant¡£¡¡¡¡The¡¡two¡¡types¡¡of¡¡motion¡¡will¡¡have¡¡certain¡¡features¡¡in¡¡common¡¡which¡¡we¡¡denote¡¡in¡¡a¡¡sort¡¡of¡¡shorthand¡¡by¡¡the¡¡letter¡¡A¡£¡¡¡¡Similarly¡¡the¡¡two¡¡types¡¡may¡¡be¡¡described¡¡as¡¡A¡¡£«¡¡a¡¡and¡¡A¡¡£«¡¡b£»¡¡so¡¡that¡¡a¡¡and¡¡b¡¡denote¡¡the¡¡specific¡¡differences¡¡which¡¡discriminate¡¡the¡¡families¡¡from¡¡one¡¡another¡£¡¡¡¡Now¡¡following¡¡in¡¡imagination¡¡the¡¡family¡¡of¡¡the¡¡type¡¡A¡¡£«¡¡a£»¡¡let¡¡us¡¡begin¡¡with¡¡the¡¡case¡¡where¡¡the¡¡specific¡¡difference¡¡a¡¡is¡¡well¡¡marked¡£¡¡¡¡As¡¡we¡¡cast¡¡our¡¡eyes¡¡along¡¡the¡¡series¡¡forming¡¡the¡¡family£»¡¡we¡¡find¡¡the¡¡difference¡¡a¡¡becoming¡¡less¡¡conspicuous¡£¡¡¡¡It¡¡gradually¡¡dwindles¡¡until¡¡it¡¡disappears£»¡¡beyond¡¡this¡¡point¡¡it¡¡either¡¡becomes¡¡reversed£»¡¡or¡¡else¡¡the¡¡type¡¡has¡¡ceased¡¡to¡¡be¡¡a¡¡possible¡¡one¡£¡¡¡¡In¡¡our¡¡shorthand¡¡we¡¡have¡¡started¡¡with¡¡A¡¡£«¡¡a£»¡¡and¡¡have¡¡watched¡¡the¡¡characteristic¡¡a¡¡dwindling¡¡to¡¡zero¡£¡¡¡¡When¡¡it¡¡vanishes¡¡we¡¡have¡¡reached¡¡a¡¡type¡¡which¡¡may¡¡be¡¡specified¡¡as¡¡A£»¡¡beyond¡¡this¡¡point¡¡the¡¡type¡¡would¡¡be¡¡A¡¡¡­¡¡a¡¡or¡¡would¡¡be¡¡impossible¡£

Following¡¡the¡¡A¡¡£«¡¡b¡¡type¡¡in¡¡the¡¡same¡¡way£»¡¡b¡¡is¡¡at¡¡first¡¡well¡¡marked£»¡¡it¡¡dwindles¡¡to¡¡zero£»¡¡and¡¡finally¡¡may¡¡become¡¡negative¡£¡¡¡¡Hence¡¡in¡¡shorthand¡¡this¡¡second¡¡family¡¡may¡¡be¡¡described¡¡as¡¡A¡¡£«¡¡b£»¡£¡£¡£A£»¡£¡£¡£A¡¡¡­¡¡b¡£

In¡¡each¡¡family¡¡there¡¡is¡¡one¡¡single¡¡member¡¡which¡¡is¡¡indistinguishable¡¡from¡¡a¡¡member¡¡of¡¡the¡¡other¡¡family£»¡¡it¡¡is¡¡called¡¡by¡¡Poincare¡¡a¡¡form¡¡of¡¡bifurcation¡£¡¡¡¡It¡¡is¡¡this¡¡conception¡¡of¡¡a¡¡form¡¡of¡¡bifurcation¡¡which¡¡forms¡¡the¡¡important¡¡consideration¡¡in¡¡problems¡¡dealing¡¡with¡¡the¡¡forms¡¡of¡¡liquid¡¡or¡¡gaseous¡¡bodies¡¡in¡¡rotation¡£

But¡¡to¡¡return¡¡to¡¡the¡¡general¡¡question£»thus¡¡far¡¡the¡¡stability¡¡of¡¡these¡¡families¡¡has¡¡not¡¡been¡¡considered£»¡¡and¡¡it¡¡is¡¡the¡¡stability¡¡which¡¡renders¡¡this¡¡way¡¡of¡¡looking¡¡at¡¡the¡¡matter¡¡so¡¡valuable¡£¡¡¡¡It¡¡may¡¡be¡¡proved¡¡that¡¡if¡¡before¡¡the¡¡point¡¡of¡¡bifurcation¡¡the¡¡type¡¡A¡¡£«¡¡a¡¡was¡¡stable£»¡¡then¡¡A¡¡£«¡¡b¡¡must¡¡have¡¡been¡¡unstable¡£¡¡¡¡Further¡¡as¡¡a¡¡and¡¡b¡¡each¡¡diminish¡¡A¡¡£«¡¡a¡¡becomes¡¡less¡¡pronouncedly¡¡stable£»¡¡and¡¡A¡¡£«¡¡b¡¡less¡¡unstable¡£¡¡¡¡On¡¡reaching¡¡the¡¡point¡¡of¡¡bifurcation¡¡A¡¡£«¡¡a¡¡has¡¡just¡¡ceased¡¡to¡¡be¡¡stable£»¡¡or¡¡what¡¡amounts¡¡to¡¡the¡¡same¡¡thing¡¡is¡¡just¡¡becoming¡¡unstable£»¡¡and¡¡the¡¡converse¡¡is¡¡true¡¡of¡¡the¡¡A¡¡£«¡¡b¡¡family¡£¡¡¡¡After¡¡passing¡¡the¡¡point¡¡of¡¡bifurcation¡¡A¡¡£«¡¡a¡¡has¡¡become¡¡definitely¡¡unstable¡¡and¡¡A¡¡£«¡¡b¡¡has¡¡become¡¡stable¡£¡¡¡¡Hence¡¡the¡¡point¡¡of¡¡bifurcation¡¡is¡¡also¡¡a¡¡point¡¡of¡¡¡¨exchange¡¡of¡¡stabilities¡¡between¡¡the¡¡two¡¡types¡£¡¨¡¡¡¡£¨In¡¡order¡¡not¡¡to¡¡complicate¡¡unnecessarily¡¡this¡¡explanation¡¡of¡¡a¡¡general¡¡principle¡¡I¡¡have¡¡not¡¡stated¡¡fully¡¡all¡¡the¡¡cases¡¡that¡¡may¡¡occur¡£¡¡¡¡Thus£º¡¡¡¡firstly£»¡¡after¡¡bifurcation¡¡A¡¡£«¡¡a¡¡may¡¡be¡¡an¡¡impossible¡¡type¡¡and¡¡A¡¡£«¡¡a¡¡will¡¡then¡¡stop¡¡at¡¡this¡¡point£»¡¡or¡¡secondly£»¡¡A¡¡£«¡¡b¡¡may¡¡have¡¡been¡¡an¡¡impossible¡¡type¡¡before¡¡bifurcation£»¡¡and¡¡will¡¡only¡¡begin¡¡to¡¡be¡¡a¡¡real¡¡one¡¡after¡¡it£»¡¡or¡¡thirdly£»¡¡both¡¡A¡¡£«¡¡a¡¡and¡¡A¡¡£«¡¡b¡¡may¡¡be¡¡impossible¡¡after¡¡the¡¡point¡¡of¡¡bifurcation£»¡¡in¡¡which¡¡case¡¡they¡¡coalesce¡¡and¡¡disappear¡£¡¡¡¡This¡¡last¡¡case¡¡shows¡¡that¡¡types¡¡arise¡¡and¡¡disappear¡¡in¡¡pairs£»¡¡and¡¡that¡¡on¡¡appearance¡¡or¡¡before¡¡disappearance¡¡one¡¡must¡¡be¡¡stable¡¡and¡¡the¡¡other¡¡unstable¡££©

In¡¡nature¡¡it¡¡is¡¡of¡¡course¡¡only¡¡the¡¡stable¡¡types¡¡of¡¡motion¡¡which¡¡can¡¡persist¡¡for¡¡more¡¡than¡¡a¡¡short¡¡time¡£¡¡¡¡Thus¡¡the¡¡task¡¡of¡¡the¡¡physical¡¡evolutionist¡¡is¡¡to¡¡determine¡¡the¡¡forms¡¡of¡¡bifurcation£»¡¡at¡¡which¡¡he¡¡must£»¡¡as¡¡it¡¡were£»¡¡change¡¡carriages¡¡in¡¡the¡¡evolutionary¡¡journey¡¡so¡¡as¡¡always¡¡to¡¡follow¡¡the¡¡stable¡¡route¡£¡¡¡¡He¡¡must¡¡besides¡¡be¡¡able¡¡to¡¡indicate¡¡some¡¡natural¡¡process¡¡which¡¡shall¡¡correspond¡¡in¡¡effect¡¡to¡¡the¡¡ideal¡¡arrangement¡¡of¡¡the¡¡several¡¡types¡¡of¡¡motion¡¡in¡¡families¡¡with¡¡gradually¡¡changing¡¡specific¡¡differences¡£¡¡¡¡Although£»¡¡as¡¡we¡¡shall¡¡see¡¡hereafter£»¡¡it¡¡may¡¡frequently¡¡or¡¡even¡¡generally¡¡be¡¡impossible¡¡to¡¡specify¡¡with¡¡exactness¡¡the¡¡forms¡¡of¡¡bifurcation¡¡in¡¡the¡¡process¡¡of¡¡evolution£»¡¡yet¡¡the¡¡conception¡¡is¡¡one¡¡of¡¡fundamental¡¡importance¡£

The¡¡ideas¡¡involved¡¡in¡¡this¡¡sketch¡¡are¡¡no¡¡doubt¡¡somewhat¡¡recondite£»¡¡but¡¡I¡¡hope¡¡to¡¡render¡¡them¡¡clearer¡¡to¡¡the¡¡non¡­mathematical¡¡reader¡¡by¡¡homologous¡¡considerations¡¡in¡¡other¡¡fields¡¡of¡¡thought¡¡£¨I¡¡considered¡¡this¡¡subject¡¡in¡¡my¡¡Presidential¡¡address¡¡to¡¡the¡¡British¡¡Association¡¡in¡¡1905£»¡¡¡¨Report¡¡of¡¡the¡¡75th¡¡Meeting¡¡of¡¡the¡¡British¡¡Assoc¡£¡¨¡¡£¨S¡£¡¡Africa£»¡¡1905£©£»¡¡London£»¡¡1906£»¡¡page¡¡3¡£¡¡¡¡Some¡¡reviewers¡¡treated¡¡my¡¡speculations¡¡as¡¡fanciful£»¡¡but¡¡as¡¡I¡¡believe¡¡that¡¡this¡¡was¡¡due¡¡generally¡¡to¡¡misapprehension£»¡¡and¡¡as¡¡I¡¡hold¡¡that¡¡homologous¡¡considerations¡¡as¡¡to¡¡stability¡¡and¡¡instability¡¡are¡¡really¡¡applicable¡¡to¡¡evolution¡¡of¡¡all¡¡sorts£»¡¡I¡¡have¡¡thought¡¡it¡¡well¡¡to¡¡return¡¡to¡¡the¡¡subject¡¡in¡¡the¡¡present¡¡paper¡££©£»¡¡and¡¡I¡¡shall¡¡pass¡¡on¡¡thence¡¡to¡¡illustrations¡¡which¡¡will¡¡teach¡¡us¡¡something¡¡of¡¡the¡¡evolution¡¡of¡¡stellar¡¡systems¡£

States¡¡or¡¡governments¡¡are¡¡organised¡¡schemes¡¡of¡¡action¡¡amongst¡¡groups¡¡of¡¡men£»¡¡and¡¡they¡¡belong¡¡to¡¡various¡¡types¡¡to¡¡which¡¡generic¡¡names£»¡¡such¡¡as¡¡autocracy£»¡¡aristocracy¡¡or¡¡democracy£»¡¡are¡¡somewhat¡¡loosely¡¡applied¡£¡¡¡¡A¡¡definite¡¡type¡¡of¡¡government¡¡corresponds¡¡to¡¡one¡¡of¡¡our¡¡types¡¡of¡¡motion£»¡¡and¡¡while¡¡retaining¡¡its¡¡type¡¡it¡¡undergoes¡¡a¡¡slow¡¡change¡¡as¡¡the¡¡civilisation¡¡and¡¡character¡¡of¡¡the¡¡people¡¡change£»¡¡and¡¡as¡¡the¡¡relationship¡¡of¡¡the¡¡nation¡¡to¡¡other¡¡nations¡¡changes¡£¡¡¡¡In¡¡the¡¡language¡¡used¡¡before£»¡¡the¡¡government¡¡belongs¡¡to¡¡a¡¡family£»¡¡and¡¡as¡¡time¡¡advances¡¡we¡¡proceed¡¡through¡¡the¡¡successive¡¡members¡¡of¡¡the¡¡family¡£¡¡¡¡A¡¡government¡¡possesses¡¡a¡¡certain¡¡degree¡¡of¡¡stability¡¡hardly¡¡measurable¡¡in¡¡numbers¡¡howeverto¡¡resist¡¡disintegrating¡¡influences¡¡such¡¡as¡¡may¡¡arise¡¡from¡¡wars£»¡¡famines£»¡¡and¡¡internal¡¡dissensions¡£¡¡¡¡This¡¡stability¡¡gradually¡¡rises¡¡to¡¡a¡¡maximum¡¡and¡¡gradually¡¡declines¡£¡¡¡¡The¡¡degree¡¡of¡¡stability¡¡at¡¡any¡¡epoch¡¡will¡¡depend¡¡on¡¡the¡¡fitness¡¡of¡¡some¡¡leading¡¡feature¡¡of¡¡the¡¡government¡¡to¡¡suit¡¡the¡¡slowly¡¡altering¡¡circumstances£»¡¡and¡¡that¡¡feature¡¡corresponds¡¡to¡¡the¡¡characteristic¡¡denoted¡¡by¡¡a¡¡in¡¡the¡¡physical¡¡problem¡£¡¡¡¡A¡¡time¡¡at¡¡length¡¡arrives¡¡when¡¡the¡¡stability¡¡vanishes£»¡¡and¡¡the¡¡slightest¡¡shock¡¡will¡¡overturn¡¡the¡¡government¡£¡¡¡¡At¡¡this¡¡stage¡¡we¡¡have¡¡reached¡¡the¡¡crisis¡¡of¡¡a¡¡point¡¡of¡¡bifurcation£»¡¡and¡¡there¡¡will¡¡then¡¡be¡¡some¡¡circumstance£»¡¡apparently¡¡quite¡¡insignificant¡¡and¡¡almost¡¡unnoticed£»¡¡which¡¡is¡¡such¡¡as¡¡to¡¡prevent¡¡the¡¡occurrence¡¡of¡¡anarchy¡£¡¡¡¡This¡¡circumstance¡¡or¡¡condition¡¡is¡¡what¡¡we¡¡typified¡¡as¡¡b¡£¡¡¡¡Insignificant¡¡although¡¡it¡¡may¡¡seem£»¡¡it¡¡has¡¡started¡¡the¡¡government¡¡on¡¡a¡¡new¡¡career¡¡of¡¡stability¡¡by¡¡imparting¡¡to¡¡it¡¡a¡¡new¡¡type¡£¡¡¡¡It¡¡grows¡¡in¡¡importance£»¡¡the¡¡form¡¡of¡¡government¡¡becomes¡¡obviously¡¡different£»¡¡and¡¡its¡¡stability¡¡increases¡£¡¡¡¡Then¡¡in¡¡its¡¡turn¡¡this¡¡newly¡¡acquired¡¡stability¡¡declines£»¡¡and¡¡we¡¡pass¡¡on¡¡to¡¡a¡¡new¡¡crisis¡¡or¡¡revolution¡£¡¡¡¡There¡¡is¡¡thus¡¡a¡¡series¡¡of¡¡¡¨points¡¡of¡¡bifurcation¡¨¡¡in¡¡history¡¡at¡¡which¡¡the¡¡continuity¡¡of¡¡political¡¡history¡¡is¡¡maintained¡¡by¡¡means¡¡of¡¡changes¡¡in¡¡the¡¡type¡¡of¡¡government¡£¡¡¡¡These¡¡ideas¡¡seem£»¡¡to¡¡me¡¡at¡¡least£»¡¡to¡¡give¡¡a¡¡true¡¡account¡¡of¡¡the¡¡history¡¡of¡¡states£»¡¡and¡¡I¡¡contend¡¡that¡¡it¡¡is¡¡no¡¡mere¡¡fanciful¡¡analogy¡¡but¡¡a¡¡true¡¡homology£»¡¡when¡¡in¡¡both¡¡realms¡¡of¡¡thought¡¡the¡¡physical¡¡and¡¡the¡¡politicalwe¡¡perceive¡¡the¡¡existence¡¡of¡¡forms¡¡of¡¡bifurcation¡¡and¡¡of¡¡exchanges¡¡of¡¡stability¡£

Further¡¡than¡¡this£»¡¡I¡¡would¡¡ask¡¡whether¡¡the¡¡same¡¡train¡¡of¡¡ideas¡¡does¡¡not¡¡also¡¡apply¡¡to¡¡the¡¡evolution¡¡of¡¡animals£¿¡¡¡¡A¡¡species¡¡is¡¡well¡¡adapted¡¡to¡¡its¡¡environment¡¡when¡¡the¡¡individual¡¡can¡¡withstand¡¡the¡¡shocks¡¡of¡¡famine¡¡or¡¡the¡¡attacks¡¡and¡¡competition¡¡of¡¡other¡¡animals£»¡¡it¡¡then¡¡possesses¡¡a¡¡high¡¡degree¡¡of¡¡stability¡£¡¡¡¡Most¡¡of¡¡the¡¡casual¡¡variations¡¡of¡¡individuals¡¡are¡¡indifferent£»¡¡for¡¡they¡¡do¡¡not¡¡tell¡¡much¡¡either¡¡for¡¡or¡¡against¡¡success¡¡in¡¡life£»¡¡they¡¡are¡¡small¡¡oscillations¡¡which¡¡leave¡¡the¡¡type¡¡unchanged¡£¡¡¡¡As¡¡circumstances¡¡change£»¡¡the¡¡stability¡¡of¡¡the¡¡species¡¡may¡¡gradually¡¡dwindle¡¡through¡¡the¡¡insufficiency¡¡of¡¡some¡¡definite¡¡quality£»¡¡on¡¡which¡¡in¡¡earlier¡¡times¡¡no¡¡such¡¡insistent¡¡demands¡¡were¡¡made¡£¡¡¡¡The¡¡individual¡¡animals¡¡will¡¡then¡¡tend¡¡to¡¡fail¡¡in¡¡the¡¡struggle¡¡for¡¡life£»¡¡the¡¡numbers¡¡will¡¡dwindle¡¡and¡¡extinction¡¡may¡¡ensue¡£¡¡¡¡But¡¡it¡¡may¡¡be¡¡that¡¡some¡¡new¡¡variation£»¡¡at¡¡first¡¡of¡¡insignificant¡¡importance£»¡¡may¡¡just¡¡serve¡¡to¡¡turn¡¡the¡¡scale¡£¡¡¡¡A¡¡new¡¡type¡¡may¡¡be¡¡formed¡¡in¡¡which¡¡the¡¡variation¡¡in¡¡question¡¡is¡¡preserved¡¡and¡¡augmented£»¡¡its¡¡stability¡¡may¡¡increase¡¡and¡¡in¡¡time¡¡a¡¡new¡¡species¡¡may¡¡be¡¡produced¡£

At¡¡the¡¡risk¡¡of¡¡condemnation¡¡as¡¡a¡¡wanderer¡¡beyond¡¡my¡¡province¡¡into¡¡the¡¡region¡¡of¡¡biological¡¡evolution£»¡¡I¡¡would¡¡say¡¡that¡¡this¡¡view¡¡accords¡¡with¡¡what¡¡I¡¡understand¡¡to¡¡be¡¡the¡¡views¡¡of¡¡some¡¡naturalists£»¡¡who¡¡recognise¡¡the¡¡existence¡¡of¡¡critical¡¡periods¡¡in¡¡biological¡¡history¡¡at¡¡which¡¡extinction¡¡occurs¡¡or¡¡which¡¡form¡¡the¡¡starting¡­point¡¡for¡¡the¡¡formation¡¡of¡¡new¡¡species¡£¡¡¡¡Ought¡¡we¡¡not¡¡then¡¡to¡¡expect¡¡that¡¡long¡¡periods¡¡will¡¡elapse¡¡during¡¡which¡¡a¡¡type¡¡of¡¡animal¡¡will¡¡remain¡¡almost¡¡constant£»¡¡followed¡¡by¡¡other¡¡periods£»¡¡enormously¡¡long¡¡no¡¡doubt¡¡as¡¡measured¡¡in¡¡the¡¡life¡¡of¡¡man£»¡¡of¡¡acute¡¡struggle¡¡for¡¡existence¡¡when¡¡the¡¡type¡¡will¡¡change¡¡more¡¡rapidly£¿¡¡¡¡This¡¡at¡¡least¡¡is¡¡the¡¡view¡¡suggested¡¡by¡¡the¡¡theory¡¡of¡¡stability¡¡in¡¡the¡¡physical¡¡universe¡£¡¡¡¡£¨I¡¡make¡¡no¡¡claim¡¡to¡¡extensive¡¡reading¡¡on¡¡this¡¡subject£»¡¡but¡¡refer¡¡the¡¡reader¡¡for¡¡example¡¡to¡¡a¡¡paper¡¡by¡¡Professor¡¡A¡£A¡£W¡£¡¡Hubrecht¡¡on¡¡¡¨De¡¡Vries's¡¡theory¡¡of¡¡Mutations¡¨£»¡¡¡¨Popular¡¡Science¡¡Monthly¡¨£»¡¡July¡¡1904£»¡¡especially¡¡to¡¡page¡¡213¡££©

And¡¡now¡¡I¡¡propose¡¡to¡¡apply¡¡these¡¡ideas¡¡of¡¡stability¡¡to¡¡the¡¡theory¡¡of¡¡stellar¡¡evolution£»¡¡and¡¡finally¡¡to¡¡illustrate¡¡them¡¡by¡¡certain¡¡recent¡¡observations¡¡of¡¡a¡¡very¡¡remarkable¡¡character¡£

Stars¡¡and¡¡planets¡¡are¡¡formed¡¡of¡¡materials¡¡whic
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡