°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
figure¡¡has¡¡therefore¡¡been¡¡called¡¡the¡¡¡¨pear¡shaped¡¡figure¡¡of¡¡equilibrium¡£¡¨¡¡¡¡The¡¡firm¡¡line¡¡shows¡¡this¡¡new¡¡type¡¡of¡¡figure£»¡¡whilst£»¡¡as¡¡already¡¡explained£»¡¡the¡¡dotted¡¡line¡¡shows¡¡the¡¡form¡¡of¡¡bifurcation¡¡from¡¡which¡¡it¡¡is¡¡derived¡£¡¡¡¡The¡¡specific¡¡mark¡¡of¡¡this¡¡new¡¡family¡¡is¡¡the¡¡protrusion¡¡of¡¡the¡¡stalk¡¡together¡¡with¡¡the¡¡other¡¡corresponding¡¡smaller¡¡differences¡£¡¡¡¡If¡¡we¡¡denote¡¡this¡¡difference¡¡by¡¡c£»¡¡while¡¡A¡¡£«¡¡b¡¡denotes¡¡the¡¡Jacobian¡¡figure¡¡of¡¡bifurcation¡¡from¡¡which¡¡it¡¡is¡¡derived£»¡¡the¡¡new¡¡family¡¡may¡¡be¡¡called¡¡A¡¡£«¡¡b¡¡£«¡¡c£»¡¡and¡¡c¡¡is¡¡zero¡¡initially¡£¡¡¡¡According¡¡to¡¡my¡¡calculations¡¡this¡¡series¡¡of¡¡figures¡¡is¡¡stable¡¡£¨M¡£¡¡Liapounoff¡¡contends¡¡that¡¡for¡¡constant¡¡density¡¡the¡¡new¡¡series¡¡of¡¡figures£»¡¡which¡¡M¡£¡¡Poincare¡¡discovered£»¡¡has¡¡less¡¡rotational¡¡momentum¡¡than¡¡that¡¡of¡¡the¡¡figure¡¡of¡¡bifurcation¡£¡¡¡¡If¡¡he¡¡is¡¡correct£»¡¡the¡¡figure¡¡of¡¡bifurcation¡¡is¡¡a¡¡limit¡¡of¡¡stable¡¡figures£»¡¡and¡¡none¡¡can¡¡exist¡¡with¡¡stability¡¡for¡¡greater¡¡rotational¡¡momentum¡£¡¡¡¡My¡¡own¡¡work¡¡seems¡¡to¡¡indicate¡¡that¡¡the¡¡opposite¡¡is¡¡true£»¡¡and£»¡¡notwithstanding¡¡M¡£¡¡Liapounoff's¡¡deservedly¡¡great¡¡authority£»¡¡I¡¡venture¡¡to¡¡state¡¡the¡¡conclusions¡¡in¡¡accordance¡¡with¡¡my¡¡own¡¡work¡££©£»¡¡but¡¡I¡¡do¡¡not¡¡know¡¡at¡¡what¡¡stage¡¡of¡¡its¡¡development¡¡it¡¡becomes¡¡unstable¡£
Professor¡¡Jeans¡¡has¡¡solved¡¡a¡¡problem¡¡which¡¡is¡¡of¡¡interest¡¡as¡¡throwing¡¡light¡¡on¡¡the¡¡future¡¡development¡¡of¡¡the¡¡pear¡shaped¡¡figure£»¡¡although¡¡it¡¡is¡¡of¡¡a¡¡still¡¡more¡¡ideal¡¡character¡¡than¡¡the¡¡one¡¡which¡¡has¡¡been¡¡discussed¡£¡¡¡¡He¡¡imagines¡¡an¡¡INFINITELY¡¡long¡¡circular¡¡cylinder¡¡of¡¡liquid¡¡to¡¡be¡¡in¡¡rotation¡¡about¡¡its¡¡central¡¡axis¡£¡¡¡¡The¡¡existence¡¡is¡¡virtually¡¡postulated¡¡of¡¡a¡¡demon¡¡who¡¡is¡¡always¡¡occupied¡¡in¡¡keeping¡¡the¡¡axis¡¡of¡¡the¡¡cylinder¡¡straight£»¡¡so¡¡that¡¡Jeans¡¡has¡¡only¡¡to¡¡concern¡¡himself¡¡with¡¡the¡¡stability¡¡of¡¡the¡¡form¡¡of¡¡the¡¡section¡¡of¡¡the¡¡cylinder£»¡¡which¡¡as¡¡I¡¡have¡¡said¡¡is¡¡a¡¡circle¡¡with¡¡the¡¡axis¡¡of¡¡rotation¡¡at¡¡the¡¡centre¡£¡¡¡¡He¡¡then¡¡supposes¡¡the¡¡liquid¡¡forming¡¡the¡¡cylinder¡¡to¡¡shrink¡¡in¡¡diameter£»¡¡just¡¡as¡¡we¡¡have¡¡done£»¡¡and¡¡finds¡¡that¡¡the¡¡speed¡¡of¡¡rotation¡¡must¡¡increase¡¡so¡¡as¡¡to¡¡keep¡¡up¡¡the¡¡constancy¡¡of¡¡the¡¡rotational¡¡momentum¡£¡¡¡¡The¡¡circularity¡¡of¡¡section¡¡is¡¡at¡¡first¡¡stable£»¡¡but¡¡as¡¡the¡¡shrinkage¡¡proceeds¡¡the¡¡stability¡¡diminishes¡¡and¡¡at¡¡length¡¡vanishes¡£¡¡¡¡This¡¡stage¡¡in¡¡the¡¡process¡¡is¡¡a¡¡form¡¡of¡¡bifurcation£»¡¡and¡¡the¡¡stability¡¡passes¡¡over¡¡to¡¡a¡¡new¡¡series¡¡consisting¡¡of¡¡cylinders¡¡which¡¡are¡¡elliptic¡¡in¡¡section¡£¡¡¡¡The¡¡circular¡¡cylinders¡¡are¡¡exactly¡¡analogous¡¡with¡¡our¡¡planetary¡¡spheroids£»¡¡and¡¡the¡¡elliptic¡¡ones¡¡with¡¡the¡¡Jacobian¡¡ellipsoids¡£
With¡¡further¡¡shrinkage¡¡the¡¡elliptic¡¡cylinders¡¡become¡¡unstable£»¡¡a¡¡new¡¡form¡¡of¡¡bifurcation¡¡is¡¡reached£»¡¡and¡¡the¡¡stability¡¡passes¡¡over¡¡to¡¡a¡¡series¡¡of¡¡cylinders¡¡whose¡¡section¡¡is¡¡pear¡shaped¡£¡¡¡¡Thus¡¡far¡¡the¡¡analogy¡¡is¡¡complete¡¡between¡¡our¡¡problem¡¡and¡¡Jeans's£»¡¡and¡¡in¡¡consequence¡¡of¡¡the¡¡greater¡¡simplicity¡¡of¡¡the¡¡conditions£»¡¡he¡¡is¡¡able¡¡to¡¡carry¡¡his¡¡investigation¡¡further¡£¡¡¡¡He¡¡finds¡¡that¡¡the¡¡stalk¡¡end¡¡of¡¡the¡¡pear¡like¡¡section¡¡continues¡¡to¡¡protrude¡¡more¡¡and¡¡more£»¡¡and¡¡the¡¡flattening¡¡between¡¡it¡¡and¡¡the¡¡axis¡¡of¡¡rotation¡¡becomes¡¡a¡¡constriction¡£¡¡¡¡Finally¡¡the¡¡neck¡¡breaks¡¡and¡¡a¡¡satellite¡¡cylinder¡¡is¡¡born¡£¡¡¡¡Jeans's¡¡figure¡¡for¡¡an¡¡advanced¡¡stage¡¡of¡¡development¡¡is¡¡shown¡¡in¡¡a¡¡figure¡¡titled¡¡¡¨Section¡¡of¡¡a¡¡rotating¡¡cylinder¡¡of¡¡liquid¡¨¡¡£¨Fig¡£¡¡4¡££©£»¡¡but¡¡his¡¡calculations¡¡do¡¡not¡¡enable¡¡him¡¡actually¡¡to¡¡draw¡¡the¡¡state¡¡of¡¡affairs¡¡after¡¡the¡¡rupture¡¡of¡¡the¡¡neck¡£
There¡¡are¡¡certain¡¡difficulties¡¡in¡¡admitting¡¡the¡¡exact¡¡parallelism¡¡between¡¡this¡¡problem¡¡and¡¡ours£»¡¡and¡¡thus¡¡the¡¡final¡¡development¡¡of¡¡our¡¡pear¡shaped¡¡figure¡¡and¡¡the¡¡end¡¡of¡¡its¡¡stability¡¡in¡¡a¡¡form¡¡of¡¡bifurcation¡¡remain¡¡hidden¡¡from¡¡our¡¡view£»¡¡but¡¡the¡¡successive¡¡changes¡¡as¡¡far¡¡as¡¡they¡¡have¡¡been¡¡definitely¡¡traced¡¡are¡¡very¡¡suggestive¡¡in¡¡the¡¡study¡¡of¡¡stellar¡¡evolution¡£
Attempts¡¡have¡¡been¡¡made¡¡to¡¡attack¡¡this¡¡problem¡¡from¡¡the¡¡other¡¡end¡£¡¡¡¡If¡¡we¡¡begin¡¡with¡¡a¡¡liquid¡¡satellite¡¡revolving¡¡about¡¡a¡¡liquid¡¡planet¡¡and¡¡proceed¡¡backwards¡¡in¡¡time£»¡¡we¡¡must¡¡make¡¡the¡¡two¡¡masses¡¡expand¡¡so¡¡that¡¡their¡¡density¡¡will¡¡be¡¡diminished¡£¡¡¡¡Various¡¡figures¡¡have¡¡been¡¡drawn¡¡exhibiting¡¡the¡¡shapes¡¡of¡¡two¡¡masses¡¡until¡¡their¡¡surfaces¡¡approach¡¡close¡¡to¡¡one¡¡another¡¡and¡¡even¡¡until¡¡they¡¡just¡¡coalesce£»¡¡but¡¡the¡¡discussion¡¡of¡¡their¡¡stability¡¡is¡¡not¡¡easy¡£¡¡¡¡At¡¡present¡¡it¡¡would¡¡seem¡¡to¡¡be¡¡impossible¡¡to¡¡reach¡¡coalescence¡¡by¡¡any¡¡series¡¡of¡¡stable¡¡transformations£»¡¡and¡¡if¡¡this¡¡is¡¡so¡¡Professor¡¡Jeans's¡¡investigation¡¡has¡¡ceased¡¡to¡¡be¡¡truly¡¡analogous¡¡to¡¡our¡¡problem¡¡at¡¡some¡¡undetermined¡¡stage¡£¡¡¡¡However¡¡this¡¡may¡¡be¡¡this¡¡line¡¡of¡¡research¡¡throws¡¡an¡¡instructive¡¡light¡¡on¡¡what¡¡we¡¡may¡¡expect¡¡to¡¡find¡¡in¡¡the¡¡evolution¡¡of¡¡real¡¡stellar¡¡systems¡£
In¡¡the¡¡second¡¡part¡¡of¡¡this¡¡paper¡¡I¡¡shall¡¡point¡¡out¡¡the¡¡bearing¡¡which¡¡this¡¡investigation¡¡of¡¡the¡¡evolution¡¡of¡¡an¡¡ideal¡¡liquid¡¡star¡¡may¡¡have¡¡on¡¡the¡¡genesis¡¡of¡¡double¡¡stars¡£
II¡£
There¡¡are¡¡in¡¡the¡¡heavens¡¡many¡¡stars¡¡which¡¡shine¡¡with¡¡a¡¡variable¡¡brilliancy¡£¡¡Amongst¡¡these¡¡there¡¡is¡¡a¡¡class¡¡which¡¡exhibits¡¡special¡¡peculiarities£»¡¡the¡¡members¡¡of¡¡this¡¡class¡¡are¡¡generally¡¡known¡¡as¡¡Algol¡¡Variables£»¡¡because¡¡the¡¡variability¡¡of¡¡the¡¡star¡¡Beta¡¡Persei¡¡or¡¡Algol¡¡was¡¡the¡¡first¡¡of¡¡such¡¡cases¡¡to¡¡attract¡¡the¡¡attention¡¡of¡¡astronomers£»¡¡and¡¡because¡¡it¡¡is¡¡perhaps¡¡still¡¡the¡¡most¡¡remarkable¡¡of¡¡the¡¡whole¡¡class¡£¡¡¡¡But¡¡the¡¡circumstances¡¡which¡¡led¡¡to¡¡this¡¡discovery¡¡were¡¡so¡¡extraordinary¡¡that¡¡it¡¡seems¡¡worth¡¡while¡¡to¡¡pause¡¡a¡¡moment¡¡before¡¡entering¡¡on¡¡the¡¡subject¡£
John¡¡Goodricke£»¡¡a¡¡deaf¡mute£»¡¡was¡¡born¡¡in¡¡1764£»¡¡he¡¡was¡¡grandson¡¡and¡¡heir¡¡of¡¡Sir¡¡John¡¡Goodricke¡¡of¡¡Ribston¡¡Hall£»¡¡Yorkshire¡£¡¡¡¡In¡¡November¡¡1782£»¡¡he¡¡noted¡¡that¡¡the¡¡brilliancy¡¡of¡¡Algol¡¡waxed¡¡and¡¡waned¡¡£¨It¡¡is¡¡said¡¡that¡¡Georg¡¡Palitzch£»¡¡a¡¡farmer¡¡of¡¡Prohlis¡¡near¡¡Dresden£»¡¡had¡¡about¡¡1758¡¡already¡¡noted¡¡the¡¡variability¡¡of¡¡Algol¡¡with¡¡the¡¡naked¡¡eye¡£¡¡¡¡¡¨Journ¡£¡¡Brit¡£¡¡Astron¡£¡¡Assoc¡£¡¨¡¡Vol¡£¡¡XV¡£¡¡£¨1904¡5£©£»¡¡page¡¡203¡££©£»¡¡and¡¡devoted¡¡himself¡¡to¡¡observing¡¡it¡¡on¡¡every¡¡fine¡¡night¡¡from¡¡the¡¡28th¡¡December¡¡1782¡¡to¡¡the¡¡12th¡¡May¡¡1783¡£¡¡¡¡He¡¡communicated¡¡his¡¡observations¡¡to¡¡the¡¡Royal¡¡Society£»¡¡and¡¡suggested¡¡that¡¡the¡¡variation¡¡in¡¡brilliancy¡¡was¡¡due¡¡to¡¡periodic¡¡eclipses¡¡by¡¡a¡¡dark¡¡companion¡¡star£»¡¡a¡¡theory¡¡now¡¡universally¡¡accepted¡¡as¡¡correct¡£¡¡¡¡The¡¡Royal¡¡Society¡¡recognised¡¡the¡¡importance¡¡of¡¡the¡¡discovery¡¡by¡¡awarding¡¡to¡¡Goodricke£»¡¡then¡¡only¡¡19¡¡years¡¡of¡¡age£»¡¡their¡¡highest¡¡honour£»¡¡the¡¡Copley¡¡medal¡£¡¡¡¡His¡¡later¡¡observations¡¡of¡¡Beta¡¡Lyrae¡¡and¡¡of¡¡Delta¡¡Cephei¡¡were¡¡almost¡¡as¡¡remarkable¡¡as¡¡those¡¡of¡¡Algol£»¡¡but¡¡unfortunately¡¡a¡¡career¡¡of¡¡such¡¡extraordinary¡¡promise¡¡was¡¡cut¡¡short¡¡by¡¡death£»¡¡only¡¡a¡¡fortnight¡¡after¡¡his¡¡election¡¡to¡¡the¡¡Royal¡¡Society¡£¡¡¡¡£¨¡¨Dict¡£¡¡of¡¡National¡¡Biography¡¨£»¡¡article¡¡Goodricke¡¡£¨John£©¡£¡¡¡¡The¡¡article¡¡is¡¡by¡¡Miss¡¡Agnes¡¡Clerke¡£¡¡¡¡It¡¡is¡¡strange¡¡that¡¡she¡¡did¡¡not¡¡then¡¡seem¡¡to¡¡be¡¡aware¡¡that¡¡he¡¡was¡¡a¡¡deaf¡mute£»¡¡but¡¡she¡¡notes¡¡the¡¡fact¡¡in¡¡her¡¡¡¨Problems¡¡of¡¡Astrophysics¡¨£»¡¡page¡¡337£»¡¡London£»¡¡1903¡££©
It¡¡was¡¡not¡¡until¡¡1889¡¡that¡¡Goodricke's¡¡theory¡¡was¡¡verified£»¡¡when¡¡it¡¡was¡¡proved¡¡by¡¡Vogel¡¡that¡¡the¡¡star¡¡was¡¡moving¡¡in¡¡an¡¡orbit£»¡¡and¡¡in¡¡such¡¡a¡¡manner¡¡that¡¡it¡¡was¡¡only¡¡possible¡¡to¡¡explain¡¡the¡¡rise¡¡and¡¡fall¡¡in¡¡the¡¡luminosity¡¡by¡¡the¡¡partial¡¡eclipse¡¡of¡¡a¡¡bright¡¡star¡¡by¡¡a¡¡dark¡¡companion¡£
The¡¡whole¡¡mass¡¡of¡¡the¡¡system¡¡of¡¡Algol¡¡is¡¡found¡¡to¡¡be¡¡half¡¡as¡¡great¡¡again¡¡as¡¡that¡¡of¡¡our¡¡sun£»¡¡yet¡¡the¡¡two¡¡bodies¡¡complete¡¡their¡¡orbit¡¡in¡¡the¡¡short¡¡period¡¡of¡¡2d¡¡20h¡¡48m¡¡55s¡£¡¡¡¡The¡¡light¡¡remains¡¡constant¡¡during¡¡each¡¡period£»¡¡except¡¡for¡¡9h¡¡20m¡¡when¡¡it¡¡exhibits¡¡a¡¡considerable¡¡fall¡¡in¡¡brightness¡¡£¨Clerke£»¡¡¡¨Problems¡¡of¡¡Astrophysics¡¨¡¡page¡¡302¡¡and¡¡chapter¡¡XVIII¡££©£»¡¡the¡¡curve¡¡which¡¡represents¡¡the¡¡variation¡¡in¡¡the¡¡light¡¡is¡¡shown¡¡in¡¡a¡¡figure¡¡titled¡¡¡¨The¡¡light¡curve¡¡and¡¡system¡¡of¡¡Beta¡¡Lyrae¡¨¡¡£¨Fig¡£¡¡7¡££©¡£
The¡¡spectroscope¡¡has¡¡enabled¡¡astronomers¡¡to¡¡prove¡¡that¡¡many¡¡stars£»¡¡although¡¡apparently¡¡single£»¡¡really¡¡consist¡¡of¡¡two¡¡stars¡¡circling¡¡around¡¡one¡¡another¡¡£¨If¡¡a¡¡source¡¡of¡¡light¡¡is¡¡approaching¡¡with¡¡a¡¡great¡¡velocity¡¡the¡¡waves¡¡of¡¡light¡¡are¡¡crowded¡¡together£»¡¡and¡¡conversely¡¡they¡¡are¡¡spaced¡¡out¡¡when¡¡the¡¡source¡¡is¡¡receding¡£¡¡¡¡Thus¡¡motion¡¡in¡¡the¡¡line¡¡of¡¡sight¡¡virtually¡¡produces¡¡an¡¡infinitesimal¡¡change¡¡of¡¡colour¡£¡¡¡¡The¡¡position¡¡of¡¡certain¡¡dark¡¡lines¡¡in¡¡the¡¡spectrum¡¡affords¡¡an¡¡exceedingly¡¡accurate¡¡measurement¡¡of¡¡colour¡£¡¡¡¡Thus¡¡displacements¡¡of¡¡these¡¡spectral¡¡lines¡¡enables¡¡us¡¡to¡¡measure¡¡the¡¡velocity¡¡of¡¡the¡¡source¡¡of¡¡light¡¡towards¡¡or¡¡away¡¡from¡¡the¡¡observer¡££©£»¡¡they¡¡are¡¡known¡¡as¡¡spectroscopic¡¡binaries¡£¡¡¡¡Campbell¡¡of¡¡the¡¡Lick¡¡Observatory¡¡believes¡¡that¡¡about¡¡one¡¡star¡¡in¡¡six¡¡is¡¡a¡¡binary¡¡£¨¡¨Astrophysical¡¡Journ¡£¡¨¡¡Vol¡£¡¡XIII¡£¡¡page¡¡89£»¡¡1901¡£¡¡¡¡See¡¡also¡¡A¡£¡¡Roberts£»¡¡¡¨Nature¡¨£»¡¡Sept¡£¡¡12£»¡¡1901£»¡¡page¡¡468¡££©£»¡¡thus¡¡there¡¡must¡¡be¡¡many¡¡thousand¡¡such¡¡stars¡¡within¡¡the¡¡reach¡¡of¡¡our¡¡spectroscopes¡£
The¡¡orientation¡¡of¡¡the¡¡planes¡¡of¡¡the¡¡orbits¡¡of¡¡binary¡¡stars¡¡appears¡¡to¡¡be¡¡quite¡¡arbitrary£»¡¡and¡¡in¡¡general¡¡the¡¡star¡¡does¡¡not¡¡vary¡¡in¡¡brightness¡£¡¡¡¡Amongst¡¡all¡¡such¡¡orbits¡¡there¡¡must¡¡be¡¡some¡¡whose¡¡planes¡¡pass¡¡nearly¡¡through¡¡the¡¡sun£»¡¡and¡¡in¡¡these¡¡cases¡¡the¡¡eclipse¡¡of¡¡one¡¡of¡¡the¡¡stars¡¡by¡¡the¡¡other¡¡becomes¡¡inevitable£»¡¡and¡¡in¡¡each¡¡circuit¡¡there¡¡will¡¡occur¡¡two¡¡eclipses¡¡of¡¡unequal¡¡intensities¡£
It¡¡is¡¡easy¡¡to¡¡see¡¡that¡¡in¡¡the¡¡majority¡¡of¡¡such¡¡cases¡¡the¡¡two¡¡components¡¡must¡¡move¡¡very¡¡close¡¡to¡¡one¡¡another¡£
The¡¡coincidence¡¡between¡¡the¡¡spectroscopic¡¡and¡¡the¡¡photometric¡¡evidence¡¡permits¡¡us¡¡to¡¡feel¡¡complete¡¡confidence¡¡in¡¡the¡¡theory¡¡of¡¡eclipses¡£¡¡¡¡When¡¡then¡¡we¡¡find¡¡a¡¡star¡¡with¡¡a¡¡light¡curve¡¡of¡¡perfect¡¡regularity¡¡and¡¡with¡¡a¡¡characteristics¡¡of¡¡that¡¡of¡¡Algol£»¡¡we¡¡are¡¡justified¡¡in¡¡extending¡¡the¡¡theory¡¡of¡¡eclipses¡¡to¡¡it£»¡¡although¡¡it¡¡may¡¡be¡¡too¡¡faint¡¡to¡¡permit¡¡of¡¡adequate¡¡spectroscopic¡¡examination¡£¡¡¡¡This¡¡extension¡¡of¡¡the¡¡theory¡¡secures¡¡a¡¡considerable¡¡multiplication¡¡of¡¡the¡¡examples¡¡available¡¡for¡¡observation£»¡¡and¡¡some¡¡30¡¡have¡¡