ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
¾ÅÉ«Êé¼® ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

philosophy of nature-µÚ9ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



general¡¡relations¡¡to¡¡the¡¡central¡¡body£»¡¡ceases¡¡to¡¡be¡¡the¡¡uniform¡¡filling¡¡of¡¡space£»¡¡and¡¡opposes¡¡a
specific¡¡being¡¡in¡¡itself¡¡to¡¡an¡¡abstract¡¡being¡¡apart¡¡from¡¡itself¡¡

The¡¡varying¡¡density¡¡of¡¡matter¡¡is¡¡often¡¡explained¡¡by¡¡the¡¡assumption¡¡of¡¡pores£»¡¡¡­¡¡though¡¡¡¨to¡¡explain¡¨
means¡¡in¡¡general¡¡to¡¡refer¡¡a¡¡phenomenon¡¡back¡¡to¡¡the¡¡accepted£»¡¡familiar¡¡determinations¡¡of¡¡the
understanding£»¡¡and¡¡no¡¡conceptions¡¡are¡¡more¡¡familiar¡¡than¡¡those¡¡of¡¡¡¨composition£»¡¨¡¡¡¨pieces¡¡and¡¡their
details£»¡¨¡¡and¡¡¡¨emptiness¡£¡¨¡¡Therefore¡¡nothing¡¡is¡¡clearer¡¡than¡¡to¡¡use¡¡the¡¡imaginative¡¡invention¡¡of¡¡pores
to¡¡comprehend¡¡the¡¡densification¡¡of¡¡matter¡£¡¡These¡¡would¡¡be¡¡empty¡¡interstices£»¡¡though¡¡physics¡¡does
not¡¡demonstrate¡¡them£»¡¡despite¡¡its¡¡attempt¡¡to¡¡speak¡¡of¡¡them¡¡as¡¡at¡¡hand¡¡and¡¡its¡¡claim¡¡to¡¡be¡¡based¡¡on
experience¡¡and¡¡observation¡£¡¡What¡¡is¡¡beyond¡¡these¡¡and¡¡is¡¡merely¡¡assumed¡¡is¡¡the¡¡matter¡¡of¡¡thought¡£
It¡¡does¡¡not¡¡occur¡¡to¡¡physics£»¡¡however£»¡¡that¡¡it¡¡has¡¡thoughts£»¡¡which¡¡is¡¡true¡¡in¡¡at¡¡least¡¡two¡¡senses¡¡and
here¡¡in¡¡a¡¡third¡¡sense£º¡¡the¡¡pores¡¡are¡¡only¡¡imaginative¡¡inventions¡£¡¡

An¡¡immediate¡¡example¡¡of¡¡the¡¡peculiar¡¡specification¡¡of¡¡gravity¡¡offered¡¡by¡¡physics¡¡is¡¡furnished¡¡by¡¡the
phenomenon¡¡that£»¡¡when¡¡a¡¡bar¡¡of¡¡iron£»¡¡evenly¡¡balanced¡¡on¡¡its¡¡fulcrum£»¡¡is¡¡magnetised£»¡¡it¡¡loses¡¡its
equilibrium¡¡and¡¡shows¡¡itself¡¡to¡¡be¡¡heavier¡¡at¡¡one¡¡pole¡¡than¡¡at¡¡the¡¡other¡£¡­The¡¡axioms¡¡presupposed
by¡¡physics¡¡in¡¡its¡¡mode¡¡of¡¡representing¡¡density¡¡are£º¡¡£¨1£©¡¡that¡¡equal¡¡amounts¡¡of¡¡equally¡¡large¡¡material
parts¡¡weigh¡¡the¡¡same£»¡­in¡¡this¡¡way¡¡the¡¡formal¡¡identity¡¡of¡¡gravity¡¡remains¡¡consistent¡­£¨2£©¡¡the¡¡measure
of¡¡the¡¡number¡¡of¡¡parts¡¡is¡¡the¡¡amount¡¡of¡¡weight£»¡¡but¡¡£¨3£©¡¡also¡¡of¡¡space£»¡¡so¡¡that¡¡bodies¡¡of¡¡equal
weight¡¡occupy¡¡equal¡¡amounts¡¡of¡¡space£»¡¡£¨4£©¡¡consequently£»¡¡when¡¡equal¡¡weights¡¡are¡¡found¡¡in
different¡¡volumes£»¡¡the¡¡equality¡¡of¡¡the¡¡spaces¡¡is¡¡preserved¡¡by¡¡the¡¡assumption¡¡of¡¡pores¡¡which¡¡fill¡¡the
space¡£¡¡

Kant¡¡has¡¡already¡¡contrasted¡¡intensity¡¡to¡¡the¡¡quantitative¡¡determination¡¡of¡¡the¡¡amount£»¡¡and£»¡¡instead
of¡¡positing¡¡that¡¡the¡¡heavier¡¡body¡¡contains¡¡more¡¡particles¡¡in¡¡a¡¡certain¡¡space£»¡¡he¡¡has¡¡assumed¡¡that¡¡in
the¡¡heavier¡¡body¡¡the¡¡same¡¡number¡¡of¡¡particles¡¡fill¡¡space¡¡to¡¡a¡¡greater¡¡degree¡£¡¡In¡¡this¡¡way¡¡he¡¡created
¡¨dynamic¡¡physics¡£¡¨¡¡At¡¡least¡¡the¡¡determination¡¡of¡¡the¡¡intensive¡¡quantum¡¡would¡¡be¡¡just¡¡as¡¡correct¡¡as
that¡¡of¡¡an¡¡extensive¡¡quantum£»¡¡but¡¡this¡¡distinction¡¡£¨cf¡¡¡ì¡¡56£©¡¡is¡¡empty¡¡and¡¡in¡¡itself¡¡nothing¡£¡¡Here¡¡the
intensive¡¡determination¡¡of¡¡size£»¡¡however£»¡¡has¡¡this¡¡advantage£º¡¡that¡¡it¡¡points¡¡to¡¡the¡¡category¡¡of
measure¡¡and¡¡indicates¡¡initially¡¡a¡¡being¡¡in¡¡itself¡¡which¡¡as¡¡a¡¡conceptual¡¡determination¡¡is¡¡an¡¡immanent
determinacy¡¡of¡¡form£»¡¡and¡¡only¡¡existent¡¡as¡¡quantum¡£¡¡But¡¡to¡¡distinguish¡¡between¡¡extensive¡¡or
intensive¡¡quantum¡¡differences£»¡¡¡­¡¡and¡¡dynamic¡¡physics¡¡goes¡¡no¡¡further¡¡than¡¡this¡­does¡¡not¡¡express
any¡¡reality¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡237¡£

Density¡¡is¡¡at¡¡first¡¡only¡¡a¡¡simple¡¡determinacy¡£¡¡The¡¡simple¡¡determinacy¡¡is£»¡¡however£»¡¡essentially¡¡a
determination¡¡of¡¡form¡¡as¡¡a¡¡unity¡¡split¡¡apart¡¡from¡¡itself¡£¡¡Thus¡¡it¡¡constitutes¡¡the¡¡principle¡¡of
brittleness£»¡¡the¡¡shaping¡¡relation¡¡of¡¡its¡¡consistently¡¡maintained¡¡points¡£¡¡

The¡¡previously¡¡mentioned¡¡particles£»¡¡molecules¡¡of¡¡matter£»¡¡are¡¡an¡¡external¡¡determination¡¡of
reflection¡£¡¡The¡¡real¡¡significance¡¡of¡¡the¡¡determination¡¡of¡¡the¡¡unit¡¡is¡¡that¡¡it¡¡is¡¡the¡¡immanent¡¡form¡¡of
shaping¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡238¡£

The¡¡brittle¡¡is¡¡the¡¡subjective¡¡entity¡¡existing¡¡for¡¡itself¡¡but¡¡it¡¡must¡¡deploy¡¡the¡¡difference¡¡of¡¡the¡¡concept¡£
The¡¡point¡¡becomes¡¡the¡¡line¡¡and¡¡posits¡¡itself¡¡as¡¡an¡¡opposed¡¡extreme¡¡to¡¡the¡¡line£»¡¡the¡¡two¡¡are¡¡held¡¡by
their¡¡middle¡¡term¡¡and¡¡point¡¡of¡¡indifference¡¡in¡¡their¡¡antithesis¡£¡¡This¡¡syllogism¡¡constitutes¡¡the¡¡principle
of¡¡shaping¡¡in¡¡its¡¡developed¡¡determinacy£»¡¡and¡¡is£»¡¡in¡¡this¡¡abstract¡¡rigour£»¡¡magnetism¡£¡¡

Magnetism¡¡is¡¡one¡¡of¡¡the¡¡determinations¡¡which¡¡inevitably¡¡became¡¡prominent¡¡when¡¡thought¡¡began¡¡to
recognise¡¡itself¡¡in¡¡determinate¡¡nature¡¡and¡¡grasped¡¡the¡¡idea¡¡of¡¡a¡¡philosophy¡¡of¡¡nature¡£¡¡For¡¡the
magnet¡¡exhibits¡¡in¡¡a¡¡simple£»¡¡naive¡¡way¡¡the¡¡nature¡¡of¡¡the¡¡concept¡£¡¡The¡¡poles¡¡are¡¡not¡¡particular
things£»¡¡they¡¡do¡¡not¡¡possess¡¡sensory£»¡¡mechanical¡¡reality£»¡¡but¡¡rather¡¡an¡¡ideal¡¡reality£»¡¡the¡¡point¡¡of
indifference£»¡¡in¡¡which¡¡they¡¡have¡¡their¡¡substance£»¡¡is¡¡the¡¡unity¡¡in¡¡which¡¡they¡¡exist¡¡only¡¡as
determinations¡¡of¡¡the¡¡concept£»¡¡and¡¡the¡¡polarity¡¡is¡¡an¡¡opposition¡¡of¡¡only¡¡such¡¡moments¡£¡¡The
phenomena¡¡revealed¡¡by¡¡magnetism¡¡as¡¡merely¡¡particular¡¡are¡¡merely¡¡and¡¡repeatedly¡¡the¡¡same
determinations£»¡¡and¡¡not¡¡diverse¡¡features¡¡which¡¡could¡¡add¡¡data¡¡to¡¡a¡¡description¡£¡¡That¡¡the¡¡individual
magnetic¡¡needle¡¡points¡¡to¡¡the¡¡north£»¡¡and¡¡thus¡¡to¡¡the¡¡south¡¡as¡¡well£»¡¡is¡¡a¡¡manifestation¡¡of¡¡general
terrestrial¡¡magnetism£º¡¡in¡¡two¡¡such¡¡empirical¡¡magnets¡¡the¡¡poles¡¡named¡¡similarly¡¡repel¡¡each¡¡other£»
whereas¡¡the¡¡poles¡¡named¡¡differently¡¡attract¡£¡¡And¡¡precisely¡¡this¡¡is¡¡magnetism£»¡¡namely£»¡¡that¡¡the¡¡same
or¡¡indifferent¡¡will¡¡split¡¡apart¡¡and¡¡oppose¡¡each¡¡other¡¡in¡¡the¡¡extreme£»¡¡and¡¡the¡¡dissimilar¡¡or¡¡different
will¡¡posit¡¡its¡¡indifference¡£¡¡The¡¡differently¡¡named¡¡poles¡¡have¡¡even¡¡been¡¡called¡¡friendly£»¡¡and¡¡the
similarly¡¡named¡¡poles¡¡have¡¡been¡¡called¡¡hostile¡£¡¡

The¡¡statement£»¡¡however£»¡¡that¡¡all¡¡bodies¡¡are¡¡magnetic¡¡has¡¡an¡¡unfortunate¡¡double¡¡meaning¡£¡¡The
correct¡¡meaning¡¡is¡¡that¡¡all¡¡real£»¡¡and¡¡not¡¡merely¡¡brittle£»¡¡figures¡¡contain¡¡this¡¡concept£»¡¡but¡¡the¡¡incorrect
meaning¡¡is¡¡that¡¡all¡¡bodies¡¡also¡¡have¡¡this¡¡principle¡¡implicitly¡¡in¡¡its¡¡rigorous¡¡abstraction£»¡¡as¡¡magnetism¡£
It¡¡would¡¡be¡¡an¡¡unphilosophical¡¡thought¡¡to¡¡want¡¡to¡¡show¡¡that¡¡a¡¡form¡¡of¡¡the¡¡concept¡¡is¡¡at¡¡hand¡¡in
nature£»¡¡and¡¡that¡¡it¡¡exists¡¡universally¡¡in¡¡its¡¡determinacy¡¡as¡¡an¡¡abstraction¡£¡¡For¡¡nature¡¡is¡¡rather¡¡the
idea¡¡in¡¡the¡¡element¡¡of¡¡being¡¡apart¡¡from¡¡itself¡¡so¡¡that£»¡¡like¡¡the¡¡understanding£»¡¡it¡¡retains¡¡the¡¡moments
of¡¡the¡¡concept¡¡as¡¡dispersed¡¡and¡¡depicts¡¡them¡¡so¡¡in¡¡reality£»¡¡but¡¡in¡¡the¡¡higher¡¡organic¡¡things¡¡the
differentiated¡¡forms¡¡of¡¡the¡¡concept¡¡are¡¡unified¡¡as¡¡the¡¡highest¡¡concretion¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡239¡£

At¡¡the¡¡opposite¡¡end¡¡from¡¡magnetism£»¡¡which¡¡as¡¡linear¡¡spatiality¡¡and¡¡the¡¡ideal¡¡contrast¡¡of¡¡extremes¡¡is
the¡¡abstract¡¡concept¡¡of¡¡the¡¡shape£»¡¡stands¡¡its¡¡abstract¡¡totality¡¡the¡¡sphere£»¡¡the¡¡shape¡¡of¡¡the¡¡real
absence¡¡of¡¡shape£»¡¡of¡¡fluid¡¡indeterminacy£»¡¡and¡¡of¡¡the¡¡indifferent¡¡elasticity¡¡of¡¡the¡¡parts¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡240¡£

Between¡¡the¡¡two¡¡actually¡¡shapeless¡¡extremes¡¡contained¡¡within¡¡magnetism¡¡as¡¡the¡¡abstract¡¡concept
of¡¡the¡¡figure¡¡there¡¡appears£»¡¡as¡¡an¡¡immanent¡¡form¡¡of¡¡juxtaposition¡¡distinct¡¡from¡¡that¡¡determined¡¡by
gravity£»¡¡a¡¡kind¡¡of¡¡magnetism¡¡transformed¡¡into¡¡total¡¡corporeality£»¡¡cohesion¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡241¡£

The¡¡common¡¡understanding¡¡of¡¡cohesion¡¡merely¡¡refers¡¡to¡¡the¡¡individual¡¡moment¡¡of¡¡quantitative
strength¡¡of¡¡the¡¡connection¡¡between¡¡the¡¡parts¡¡of¡¡a¡¡body¡£¡¡Concrete¡¡cohesion¡¡is¡¡the¡¡immanent¡¡form
and¡¡determinacy¡¡of¡¡this¡¡connection£»¡¡and¡¡comprehends¡¡both¡¡external¡¡crystallisations¡¡and¡¡the
fragmentary¡¡shapes¡¡or¡¡central¡¡shapes£»¡¡crystallisation¡¡which¡¡displays¡¡itself¡¡inwardly¡¡in¡¡transparent
movement¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡242¡£

Through¡¡external¡¡crystallisation¡¡the¡¡individual¡¡body¡¡is¡¡sealed¡¡off¡¡as¡¡an¡¡individual¡¡against¡¡others£»¡¡and
capable¡¡of¡¡a¡¡mechanical¡¡process¡¡with¡¡them¡£¡¡As¡¡an¡¡inwardly¡¡formed¡¡entity¡¡the¡¡body¡¡specifies¡¡this
process¡¡in¡¡terms¡¡of¡¡its¡¡behaviour¡¡as¡¡a¡¡merely¡¡general¡¡mass¡£¡¡In¡¡terms¡¡of¡¡its¡¡elasticity£»¡¡hardness£»
softness£»¡¡viscosity£»¡¡and¡¡abilities¡¡to¡¡extend¡¡or¡¡to¡¡burst£»¡¡the¡¡body¡¡retains¡¡its¡¡individual¡¡determinacy¡¡in
resistance¡¡to¡¡external¡¡force¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡243¡£

As¡¡density£»¡¡however£»¡¡is¡¡at¡¡first¡¡only¡¡simple¡¡determinacy¡¡by¡¡virtue¡¡of¡¡the¡¡relation¡¡of¡¡volume¡¡to¡¡mass£»
cohesion¡¡is¡¡this¡¡simplicity¡¡as¡¡the¡¡selfhood¡¡of¡¡individuality¡£¡¡The¡¡self¡­preservation¡¡of¡¡the¡¡body¡¡during
the¡¡vibration¡¡from¡¡a¡¡mechanical¡¡force¡¡is£»¡¡therefore£»¡¡also¡¡an¡¡emergence¡¡of¡¡its¡¡individual£»¡¡pure
ideality£»¡¡its¡¡characteristic¡¡motion¡¡in¡¡itself¡¡through¡¡its¡¡whole¡¡cohesion¡£¡¡It¡¡is¡¡the¡¡specific¡¡determination
of¡¡its¡¡ideal¡¡externality¡¡in¡¡itself¡¡through¡¡its¡¡self¡­identified¡¡time¡£¡¡In¡¡this¡¡vibration£»¡¡the¡¡product¡¡of¡¡real
force¡¡and¡¡external¡¡pressure¡¡which¡¡the¡¡body¡¡survives¡¡in¡¡the¡¡form¡¡of¡¡its¡¡specified¡¡ideality£»¡¡this¡¡simple
form¡¡achieves¡¡independent¡¡existence¡£¡¡

But¡¡entities¡¡without¡¡cohesion¡¡¡ª¡¡which¡¡are¡¡inflexible¡¡and¡¡fluid¡¡are¡¡without¡¡resonance¡¡and¡¡in¡¡their
resistance£»¡¡which¡¡is¡¡merely¡¡an¡¡external¡¡vibration£»¡¡make¡¡only¡¡a¡¡noise¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡244¡£

This¡¡individuality£»¡¡since¡¡it¡¡is¡¡at¡¡first¡¡here¡¡only¡¡immediate£»¡¡can¡¡be¡¡suspended¡¡by¡¡mechanical¡¡force¡£
The¡¡friction£»¡¡which¡¡brings¡¡together¡¡that¡¡difference¡¡of¡¡corporeality¡¡held¡¡apart¡¡by¡¡cohesion¡¡in¡¡the
negativity¡¡of¡¡a¡¡temporal¡¡moment£»¡¡causes¡¡an¡¡initial¡¡or¡¡concluding¡¡selfdestruction¡¡of¡¡the¡¡body¡¡to
break¡¡forth¡£¡¡And¡¡the¡¡body¡¡exhibits¡¡its¡¡specific¡¡nature£»¡¡in¡¡the¡¡relationship¡¡between¡¡the¡¡inner¡¡change
and¡¡the¡¡suspension¡¡of¡¡its¡¡cohesion£»¡¡through¡¡the¡¡capacity¡¡for¡¡heat¡£¡¡

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£¨b£©¡¡The¡¡Particularisation¡¡of¡¡Differences
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ì¡¡245¡£

Shaping£»¡¡the¡¡individualisation¡¡of¡¡the¡¡mechanism¡¡or¡¡of¡¡weight£»¡¡turns¡¡into¡¡elemental¡¡particularisation¡£
The¡¡individual¡¡body¡¡has¡¡the¡¡totality¡¡of¡¡the¡¡elements¡¡within¡¡itself£»¡¡as¡¡the¡¡subject¡¡of¡¡the¡¡same¡¡the
body¡¡contains¡¡the¡¡elements¡¡in¡¡the¡¡first¡¡place¡¡as¡¡attributes¡¡or¡¡predicates£»¡¡but¡¡in¡¡the¡¡second¡¡place
these¡¡are¡¡retained¡¡only¡¡in¡¡immediate¡¡individuality£»¡¡and¡¡thus¡¡they¡¡exist¡¡also¡¡as¡¡materials¡¡indifferent
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡