友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

prior analytics-第10章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!






they stand; but if the problematic premiss is converted into its



complementary affirmative a syllogism is formed to prove that B may



belong to no C; as before: for we shall again have the first figure。



But if both premisses are affirmative; no syllogism will be



possible。 This arrangement of terms is possible both when the relation



is positive; e。g。 health; animal; man; and when it is negative; e。g。



health; horse; man。



  The same will hold good if the syllogisms are particular。 Whenever



the affirmative proposition is assertoric; whether universal or



particular; no syllogism is possible (this is proved similarly and



by the same examples as above); but when the negative proposition is



assertoric; a conclusion can be drawn by means of conversion; as



before。 Again if both the relations are negative; and the assertoric



proposition is universal; although no conclusion follows from the



actual premisses; a syllogism can be obtained by converting the



problematic premiss into its complementary affirmative as before。



But if the negative proposition is assertoric; but particular; no



syllogism is possible; whether the other premiss is affirmative or



negative。 Nor can a conclusion be drawn when both premisses are



indefinite; whether affirmative or negative; or particular。 The



proof is the same and by the same terms。







                                19







  If one of the premisses is necessary; the other problematic; then if



the negative is necessary a syllogistic conclusion can be drawn; not



merely a negative problematic but also a negative assertoric



conclusion; but if the affirmative premiss is necessary; no conclusion



is possible。 Suppose that A necessarily belongs to no B; but may



belong to all C。 If the negative premiss is converted B will belong to



no A: but A ex hypothesi is capable of belonging to all C: so once



more a conclusion is drawn by the first figure that B may belong to no



C。 But at the same time it is clear that B will not belong to any C。



For assume that it does: then if A cannot belong to any B; and B



belongs to some of the Cs; A cannot belong to some of the Cs: but ex



hypothesi it may belong to all。 A similar proof can be given if the



minor premiss is negative。 Again let the affirmative proposition be



necessary; and the other problematic; i。e。 suppose that A may belong



to no B; but necessarily belongs to all C。 When the terms are arranged



in this way; no syllogism is possible。 For (1) it sometimes turns



out that B necessarily does not belong to C。 Let A be white; B man;



C swan。 White then necessarily belongs to swan; but may belong to no



man; and man necessarily belongs to no swan; Clearly then we cannot



draw a problematic conclusion; for that which is necessary is



admittedly distinct from that which is possible。 (2) Nor again can



we draw a necessary conclusion: for that presupposes that both



premisses are necessary; or at any rate the negative premiss。 (3)



Further it is possible also; when the terms are so arranged; that B



should belong to C: for nothing prevents C falling under B; A being



possible for all B; and necessarily belonging to C; e。g。 if C stands



for 'awake'; B for 'animal'; A for 'motion'。 For motion necessarily



belongs to what is awake; and is possible for every animal: and



everything that is awake is animal。 Clearly then the conclusion cannot



be the negative assertion; if the relation must be positive when the



terms are related as above。 Nor can the opposite affirmations be



established: consequently no syllogism is possible。 A similar proof is



possible if the major premiss is affirmative。



  But if the premisses are similar in quality; when they are



negative a syllogism can always be formed by converting the



problematic premiss into its complementary affirmative as before。



Suppose A necessarily does not belong to B; and possibly may not



belong to C: if the premisses are converted B belongs to no A; and A



may possibly belong to all C: thus we have the first figure。 Similarly



if the minor premiss is negative。 But if the premisses are affirmative



there cannot be a syllogism。 Clearly the conclusion cannot be a



negative assertoric or a negative necessary proposition because no



negative premiss has been laid down either in the assertoric or in the



necessary mode。 Nor can the conclusion be a problematic negative



proposition。 For if the terms are so related; there are cases in which



B necessarily will not belong to C; e。g。 suppose that A is white; B



swan; C man。 Nor can the opposite affirmations be established; since



we have shown a case in which B necessarily does not belong to C。 A



syllogism then is not possible at all。



  Similar relations will obtain in particular syllogisms。 For whenever



the negative proposition is universal and necessary; a syllogism



will always be possible to prove both a problematic and a negative



assertoric proposition (the proof proceeds by conversion); but when



the affirmative proposition is universal and necessary; no syllogistic



conclusion can be drawn。 This can be proved in the same way as for



universal propositions; and by the same terms。 Nor is a syllogistic



conclusion possible when both premisses are affirmative: this also may



be proved as above。 But when both premisses are negative; and the



premiss that definitely disconnects two terms is universal and



necessary; though nothing follows necessarily from the premisses as



they are stated; a conclusion can be drawn as above if the problematic



premiss is converted into its complementary affirmative。 But if both



are indefinite or particular; no syllogism can be formed。 The same



proof will serve; and the same terms。



  It is clear then from what has been said that if the universal and



negative premiss is necessary; a syllogism is always possible; proving



not merely a negative problematic; but also a negative assertoric



proposition; but if the affirmative premiss is necessary no conclusion



can be drawn。 It is clear too that a syllogism is possible or not



under the same conditions whether the mode of the premisses is



assertoric or necessary。 And it is clear that all the syllogisms are



imperfect; and are completed by means of the figures mentioned。







                                20



  In the last figure a syllogism is possible whether both or only



one of the premisses is problematic。 When the premisses are



problematic the conclusion will be problematic; and also when one



premiss is problematic; the other assertoric。 But when the other



premiss is necessary; if it is affirmative the conclusion will be



neither necessary or assertoric; but if it is negative the syllogism



will result in a negative assertoric proposition; as above。 In these



also we must understand the expression 'possible' in the conclusion in



the same way as before。



  First let the premisses be problematic and suppose that both A and B



may possibly belong to every C。 Since then the affirmative proposition



is convertible into a particular; and B may possibly belong to every



C; it follows that C may possibly belong to some B。 So; if A is



possible for every C; and C is possible for some of the Bs; then A



is possible for some of the Bs。 For we have got the first figure。



And A if may possibly belong to no C; but B may possibly belong to all



C; it follows that A may possibly not belong to some B: for we shall



have the first figure again by conversion。 But if both premisses



should be negative no necessary consequence will follow from them as



they are stated; but if the premisses are converted into their



corresponding affirmatives there will be a syllogism as before。 For if



A and B may possibly not belong to C; if 'may possibly belong' is



substituted we shall again have the first figure by means of



conversion。 But if one of the premisses is universal; the other



particular; a syllogism will be possible; or not; under the



arrangement of the terms as in the case of assertoric propositions。



Suppose that A may possibly belong to all C; and B to some C。 We shall



have the first figure again if the particular premiss is converted。



For if A is possible for all C; and C for some of the Bs; then A is



possible for some of the Bs。 Similarly if the proposition BC is



universal。 Likewise also if the proposition AC is negative; and the



proposition BC affirmative: for we shall again have the first figure



by conversion。 But if both premisses should be negative…the one



universal and the other particular…although no 
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!