友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

prior analytics-第14章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!






For some things are peculiar to the species as distinct from the



genus; for species being distinct there must be attributes peculiar to



each。 Nor must we take as things which the superior term follows;



those things which the inferior term follows; e。g。 take as subjects of



the predicate 'animal' what are really subjects of the predicate



'man'。 It is necessary indeed; if animal follows man; that it should



follow all these also。 But these belong more properly to the choice of



what concerns man。 One must apprehend also normal consequents and



normal antecedents…; for propositions which obtain normally are



established syllogistically from premisses which obtain normally; some



if not all of them having this character of normality。 For the



conclusion of each syllogism resembles its principles。 We must not



however choose attributes which are consequent upon all the terms: for



no syllogism can be made out of such premisses。 The reason why this is



so will be clear in the sequel。







                                28







  If men wish to establish something about some whole; they must



look to the subjects of that which is being established (the



subjects of which it happens to be asserted); and the attributes which



follow that of which it is to be predicated。 For if any of these



subjects is the same as any of these attributes; the attribute



originally in question must belong to the subject originally in



question。 But if the purpose is to establish not a universal but a



particular proposition; they must look for the terms of which the



terms in question are predicable: for if any of these are identical;



the attribute in question must belong to some of the subject in



question。 Whenever the one term has to belong to none of the other;



one must look to the consequents of the subject; and to those



attributes which cannot possibly be present in the predicate in



question: or conversely to the attributes which cannot possibly be



present in the subject; and to the consequents of the predicate。 If



any members of these groups are identical; one of the terms in



question cannot possibly belong to any of the other。 For sometimes a



syllogism in the first figure results; sometimes a syllogism in the



second。 But if the object is to establish a particular negative



proposition; we must find antecedents of the subject in question and



attributes which cannot possibly belong to the predicate in



question。 If any members of these two groups are identical; it follows



that one of the terms in question does not belong to some of the



other。 Perhaps each of these statements will become clearer in the



following way。 Suppose the consequents of A are designated by B; the



antecedents of A by C; attributes which cannot possibly belong to A by



D。 Suppose again that the attributes of E are designated by F; the



antecedents of E by G; and attributes which cannot belong to E by H。



If then one of the Cs should be identical with one of the Fs; A must



belong to all E: for F belongs to all E; and A to all C;



consequently A belongs to all E。 If C and G are identical; A must



belong to some of the Es: for A follows C; and E follows all G。 If F



and D are identical; A will belong to none of the Es by a



prosyllogism: for since the negative proposition is convertible; and F



is identical with D; A will belong to none of the Fs; but F belongs to



all E。 Again; if B and H are identical; A will belong to none of the



Es: for B will belong to all A; but to no E: for it was assumed to



be identical with H; and H belonged to none of the Es。 If D and G



are identical; A will not belong to some of the Es: for it will not



belong to G; because it does not belong to D: but G falls under E:



consequently A will not belong to some of the Es。 If B is identical



with G; there will be a converted syllogism: for E will belong to



all A since B belongs to A and E to B (for B was found to be identical



with G): but that A should belong to all E is not necessary; but it



must belong to some E because it is possible to convert the



universal statement into a particular。



  It is clear then that in every proposition which requires proof we



must look to the aforesaid relations of the subject and predicate in



question: for all syllogisms proceed through these。 But if we are



seeking consequents and antecedents we must look for those which are



primary and most universal; e。g。 in reference to E we must look to



KF rather than to F alone; and in reference to A we must look to KC



rather than to C alone。 For if A belongs to KF; it belongs both to F



and to E: but if it does not follow KF; it may yet follow F。 Similarly



we must consider the antecedents of A itself: for if a term follows



the primary antecedents; it will follow those also which are



subordinate; but if it does not follow the former; it may yet follow



the latter。



  It is clear too that the inquiry proceeds through the three terms



and the two premisses; and that all the syllogisms proceed through the



aforesaid figures。 For it is proved that A belongs to all E;



whenever an identical term is found among the Cs and Fs。 This will



be the middle term; A and E will be the extremes。 So the first



figure is formed。 And A will belong to some E; whenever C and G are



apprehended to be the same。 This is the last figure: for G becomes the



middle term。 And A will belong to no E; when D and F are identical。



Thus we have both the first figure and the middle figure; the first;



because A belongs to no F; since the negative statement is



convertible; and F belongs to all E: the middle figure because D



belongs to no A; and to all E。 And A will not belong to some E;



whenever D and G are identical。 This is the last figure: for A will



belong to no G; and E will belong to all G。 Clearly then all



syllogisms proceed through the aforesaid figures; and we must not



select consequents of all the terms; because no syllogism is



produced from them。 For (as we saw) it is not possible at all to



establish a proposition from consequents; and it is not possible to



refute by means of a consequent of both the terms in question: for the



middle term must belong to the one; and not belong to the other。



  It is clear too that other methods of inquiry by selection of middle



terms are useless to produce a syllogism; e。g。 if the consequents of



the terms in question are identical; or if the antecedents of A are



identical with those attributes which cannot possibly belong to E;



or if those attributes are identical which cannot belong to either



term: for no syllogism is produced by means of these。 For if the



consequents are identical; e。g。 B and F; we have the middle figure



with both premisses affirmative: if the antecedents of A are identical



with attributes which cannot belong to E; e。g。 C with H; we have the



first figure with its minor premiss negative。 If attributes which



cannot belong to either term are identical; e。g。 C and H; both



premisses are negative; either in the first or in the middle figure。



But no syllogism is possible in this way。



  It is evident too that we must find out which terms in this



inquiry are identical; not which are different or contrary; first



because the object of our investigation is the middle term; and the



middle term must be not diverse but identical。 Secondly; wherever it



happens that a syllogism results from taking contraries or terms which



cannot belong to the same thing; all arguments can be reduced to the



aforesaid moods; e。g。 if B and F are contraries or cannot belong to



the same thing。 For if these are taken; a syllogism will be formed



to prove that A belongs to none of the Es; not however from the



premisses taken but in the aforesaid mood。 For B will belong to all



A and to no E。 Consequently B must be identical with one of the Hs。



Again; if B and G cannot belong to the same thing; it follows that A



will not belong to some of the Es: for then too we shall have the



middle figure: for B will belong to all A and to no G。 Consequently



B must be identical with some of the Hs。 For the fact that B and G



cannot belong to the same thing differs in no way from the fact that B



is identical with some of the Hs: for that includes everything which



cannot belong to E。



  It is clear then that from the inquiries taken by themselves no



syllogism results; but if B and F are contraries B must be identical



with one of the Hs; and the syllogism results through these terms。



It turns out then that those who inquire in this ma
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!