ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
¾ÅÉ«Êé¼® ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

prior analytics-µÚ20ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






made¡£¡¡That¡¡whatever¡¡is¡¡a¡¡man¡¡is¡¡not¡¡musical¡¡is¡¡proved¡¡destructively¡¡in



the¡¡three¡¡ways¡¡mentioned¡£



¡¡¡¡In¡¡general¡¡whenever¡¡A¡¡and¡¡B¡¡are¡¡such¡¡that¡¡they¡¡cannot¡¡belong¡¡at



the¡¡same¡¡time¡¡to¡¡the¡¡same¡¡thing£»¡¡and¡¡one¡¡of¡¡the¡¡two¡¡necessarily



belongs¡¡to¡¡everything£»¡¡and¡¡again¡¡C¡¡and¡¡D¡¡are¡¡related¡¡in¡¡the¡¡same



way£»¡¡and¡¡A¡¡follows¡¡C¡¡but¡¡the¡¡relation¡¡cannot¡¡be¡¡reversed£»¡¡then¡¡D



must¡¡follow¡¡B¡¡and¡¡the¡¡relation¡¡cannot¡¡be¡¡reversed¡£¡¡And¡¡A¡¡and¡¡D¡¡may



belong¡¡to¡¡the¡¡same¡¡thing£»¡¡but¡¡B¡¡and¡¡C¡¡cannot¡£¡¡First¡¡it¡¡is¡¡clear¡¡from



the¡¡following¡¡consideration¡¡that¡¡D¡¡follows¡¡B¡£¡¡For¡¡since¡¡either¡¡C¡¡or



D¡¡necessarily¡¡belongs¡¡to¡¡everything£»¡¡and¡¡since¡¡C¡¡cannot¡¡belong¡¡to¡¡that



to¡¡which¡¡B¡¡belongs£»¡¡because¡¡it¡¡carries¡¡A¡¡along¡¡with¡¡it¡¡and¡¡A¡¡and¡¡B



cannot¡¡belong¡¡to¡¡the¡¡same¡¡thing£»¡¡it¡¡is¡¡clear¡¡that¡¡D¡¡must¡¡follow¡¡B¡£



Again¡¡since¡¡C¡¡does¡¡not¡¡reciprocate¡¡with¡¡but¡¡A£»¡¡but¡¡C¡¡or¡¡D¡¡belongs¡¡to



everything£»¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡and¡¡D¡¡should¡¡belong¡¡to¡¡the¡¡same



thing¡£¡¡But¡¡B¡¡and¡¡C¡¡cannot¡¡belong¡¡to¡¡the¡¡same¡¡thing£»¡¡because¡¡A



follows¡¡C£»¡¡and¡¡so¡¡something¡¡impossible¡¡results¡£¡¡It¡¡is¡¡clear¡¡then



that¡¡B¡¡does¡¡not¡¡reciprocate¡¡with¡¡D¡¡either£»¡¡since¡¡it¡¡is¡¡possible¡¡that¡¡D



and¡¡A¡¡should¡¡belong¡¡at¡¡the¡¡same¡¡time¡¡to¡¡the¡¡same¡¡thing¡£



¡¡¡¡It¡¡results¡¡sometimes¡¡even¡¡in¡¡such¡¡an¡¡arrangement¡¡of¡¡terms¡¡that¡¡one



is¡¡deceived¡¡through¡¡not¡¡apprehending¡¡the¡¡opposites¡¡rightly£»¡¡one¡¡of



which¡¡must¡¡belong¡¡to¡¡everything£»¡¡e¡£g¡£¡¡we¡¡may¡¡reason¡¡that¡¡'if¡¡A¡¡and¡¡B



cannot¡¡belong¡¡at¡¡the¡¡same¡¡time¡¡to¡¡the¡¡same¡¡thing£»¡¡but¡¡it¡¡is



necessary¡¡that¡¡one¡¡of¡¡them¡¡should¡¡belong¡¡to¡¡whatever¡¡the¡¡other¡¡does



not¡¡belong¡¡to£º¡¡and¡¡again¡¡C¡¡and¡¡D¡¡are¡¡related¡¡in¡¡the¡¡same¡¡way£»¡¡and



follows¡¡everything¡¡which¡¡C¡¡follows£º¡¡it¡¡will¡¡result¡¡that¡¡B¡¡belongs



necessarily¡¡to¡¡everything¡¡to¡¡which¡¡D¡¡belongs'£º¡¡but¡¡this¡¡is¡¡false¡£



'Assume¡¡that¡¡F¡¡stands¡¡for¡¡the¡¡negation¡¡of¡¡A¡¡and¡¡B£»¡¡and¡¡again¡¡that¡¡H



stands¡¡for¡¡the¡¡negation¡¡of¡¡C¡¡and¡¡D¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡either¡¡A



or¡¡F¡¡should¡¡belong¡¡to¡¡everything£º¡¡for¡¡either¡¡the¡¡affirmation¡¡or¡¡the



denial¡¡must¡¡belong¡£¡¡And¡¡again¡¡either¡¡C¡¡or¡¡H¡¡must¡¡belong¡¡to¡¡everything£º



for¡¡they¡¡are¡¡related¡¡as¡¡affirmation¡¡and¡¡denial¡£¡¡And¡¡ex¡¡hypothesi¡¡A



belongs¡¡to¡¡everything¡¡ever¡¡thing¡¡to¡¡which¡¡C¡¡belongs¡£¡¡Therefore¡¡H



belongs¡¡to¡¡everything¡¡to¡¡which¡¡F¡¡belongs¡£¡¡Again¡¡since¡¡either¡¡F¡¡or¡¡B



belongs¡¡to¡¡everything£»¡¡and¡¡similarly¡¡either¡¡H¡¡or¡¡D£»¡¡and¡¡since¡¡H



follows¡¡F£»¡¡B¡¡must¡¡follow¡¡D£º¡¡for¡¡we¡¡know¡¡this¡£¡¡If¡¡then¡¡A¡¡follows¡¡C£»¡¡B



must¡¡follow¡¡D'¡£¡¡But¡¡this¡¡is¡¡false£º¡¡for¡¡as¡¡we¡¡proved¡¡the¡¡sequence¡¡is



reversed¡¡in¡¡terms¡¡so¡¡constituted¡£¡¡The¡¡fallacy¡¡arises¡¡because¡¡perhaps



it¡¡is¡¡not¡¡necessary¡¡that¡¡A¡¡or¡¡F¡¡should¡¡belong¡¡to¡¡everything£»¡¡or¡¡that¡¡F



or¡¡B¡¡should¡¡belong¡¡to¡¡everything£º¡¡for¡¡F¡¡is¡¡not¡¡the¡¡denial¡¡of¡¡A¡£¡¡For



not¡¡good¡¡is¡¡the¡¡negation¡¡of¡¡good£º¡¡and¡¡not¡­good¡¡is¡¡not¡¡identical¡¡with



'neither¡¡good¡¡nor¡¡not¡­good'¡£¡¡Similarly¡¡also¡¡with¡¡C¡¡and¡¡D¡£¡¡For¡¡two



negations¡¡have¡¡been¡¡assumed¡¡in¡¡respect¡¡to¡¡one¡¡term¡£











¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Book¡¡II



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1







¡¡¡¡WE¡¡have¡¡already¡¡explained¡¡the¡¡number¡¡of¡¡the¡¡figures£»¡¡the¡¡character



and¡¡number¡¡of¡¡the¡¡premisses£»¡¡when¡¡and¡¡how¡¡a¡¡syllogism¡¡is¡¡formed£»



further¡¡what¡¡we¡¡must¡¡look¡¡for¡¡when¡¡a¡¡refuting¡¡and¡¡establishing



propositions£»¡¡and¡¡how¡¡we¡¡should¡¡investigate¡¡a¡¡given¡¡problem¡¡in¡¡any



branch¡¡of¡¡inquiry£»¡¡also¡¡by¡¡what¡¡means¡¡we¡¡shall¡¡obtain¡¡principles



appropriate¡¡to¡¡each¡¡subject¡£¡¡Since¡¡some¡¡syllogisms¡¡are¡¡universal£»



others¡¡particular£»¡¡all¡¡the¡¡universal¡¡syllogisms¡¡give¡¡more¡¡than¡¡one



result£»¡¡and¡¡of¡¡particular¡¡syllogisms¡¡the¡¡affirmative¡¡yield¡¡more¡¡than



one£»¡¡the¡¡negative¡¡yield¡¡only¡¡the¡¡stated¡¡conclusion¡£¡¡For¡¡all



propositions¡¡are¡¡convertible¡¡save¡¡only¡¡the¡¡particular¡¡negative£º¡¡and



the¡¡conclusion¡¡states¡¡one¡¡definite¡¡thing¡¡about¡¡another¡¡definite¡¡thing¡£



Consequently¡¡all¡¡syllogisms¡¡save¡¡the¡¡particular¡¡negative¡¡yield¡¡more



than¡¡one¡¡conclusion£»¡¡e¡£g¡£¡¡if¡¡A¡¡has¡¡been¡¡proved¡¡to¡¡to¡¡all¡¡or¡¡to¡¡some¡¡B£»



then¡¡B¡¡must¡¡belong¡¡to¡¡some¡¡A£º¡¡and¡¡if¡¡A¡¡has¡¡been¡¡proved¡¡to¡¡belong¡¡to¡¡no



B£»¡¡then¡¡B¡¡belongs¡¡to¡¡no¡¡A¡£¡¡This¡¡is¡¡a¡¡different¡¡conclusion¡¡from¡¡the



former¡£¡¡But¡¡if¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡B



should¡¡not¡¡belong¡¡to¡¡some¡¡A£º¡¡for¡¡it¡¡may¡¡possibly¡¡belong¡¡to¡¡all¡¡A¡£



¡¡¡¡This¡¡then¡¡is¡¡the¡¡reason¡¡common¡¡to¡¡all¡¡syllogisms¡¡whether¡¡universal



or¡¡particular¡£¡¡But¡¡it¡¡is¡¡possible¡¡to¡¡give¡¡another¡¡reason¡¡concerning



those¡¡which¡¡are¡¡universal¡£¡¡For¡¡all¡¡the¡¡things¡¡that¡¡are¡¡subordinate



to¡¡the¡¡middle¡¡term¡¡or¡¡to¡¡the¡¡conclusion¡¡may¡¡be¡¡proved¡¡by¡¡the¡¡same



syllogism£»¡¡if¡¡the¡¡former¡¡are¡¡placed¡¡in¡¡the¡¡middle£»¡¡the¡¡latter¡¡in¡¡the



conclusion£»¡¡e¡£g¡£¡¡if¡¡the¡¡conclusion¡¡AB¡¡is¡¡proved¡¡through¡¡C£»¡¡whatever¡¡is



subordinate¡¡to¡¡B¡¡or¡¡C¡¡must¡¡accept¡¡the¡¡predicate¡¡A£º¡¡for¡¡if¡¡D¡¡is



included¡¡in¡¡B¡¡as¡¡in¡¡a¡¡whole£»¡¡and¡¡B¡¡is¡¡included¡¡in¡¡A£»¡¡then¡¡D¡¡will¡¡be



included¡¡in¡¡A¡£¡¡Again¡¡if¡¡E¡¡is¡¡included¡¡in¡¡C¡¡as¡¡in¡¡a¡¡whole£»¡¡and¡¡C¡¡is



included¡¡in¡¡A£»¡¡then¡¡E¡¡will¡¡be¡¡included¡¡in¡¡A¡£¡¡Similarly¡¡if¡¡the



syllogism¡¡is¡¡negative¡£¡¡In¡¡the¡¡second¡¡figure¡¡it¡¡will¡¡be¡¡possible¡¡to



infer¡¡only¡¡that¡¡which¡¡is¡¡subordinate¡¡to¡¡the¡¡conclusion£»¡¡e¡£g¡£¡¡if¡¡A



belongs¡¡to¡¡no¡¡B¡¡and¡¡to¡¡all¡¡C£»¡¡we¡¡conclude¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡C¡£¡¡If



then¡¡D¡¡is¡¡subordinate¡¡to¡¡C£»¡¡clearly¡¡B¡¡does¡¡not¡¡belong¡¡to¡¡it¡£¡¡But



that¡¡B¡¡does¡¡not¡¡belong¡¡to¡¡what¡¡is¡¡subordinate¡¡to¡¡A¡¡is¡¡not¡¡clear¡¡by



means¡¡of¡¡the¡¡syllogism¡£¡¡And¡¡yet¡¡B¡¡does¡¡not¡¡belong¡¡to¡¡E£»¡¡if¡¡E¡¡is



subordinate¡¡to¡¡A¡£¡¡But¡¡while¡¡it¡¡has¡¡been¡¡proved¡¡through¡¡the¡¡syllogism



that¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡it¡¡has¡¡been¡¡assumed¡¡without¡¡proof¡¡that¡¡B



does¡¡not¡¡belong¡¡to¡¡A£»¡¡consequently¡¡it¡¡does¡¡not¡¡result¡¡through¡¡the



syllogism¡¡that¡¡B¡¡does¡¡not¡¡belong¡¡to¡¡E¡£



¡¡¡¡But¡¡in¡¡particular¡¡syllogisms¡¡there¡¡will¡¡be¡¡no¡¡necessity¡¡of¡¡inferring



what¡¡is¡¡subordinate¡¡to¡¡the¡¡conclusion¡¡£¨for¡¡a¡¡syllogism¡¡does¡¡not¡¡result



when¡¡this¡¡premiss¡¡is¡¡particular£©£»¡¡but¡¡whatever¡¡is¡¡subordinate¡¡to¡¡the



middle¡¡term¡¡may¡¡be¡¡inferred£»¡¡not¡¡however¡¡through¡¡the¡¡syllogism£»¡¡e¡£g¡£



if¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡B¡¡to¡¡some¡¡C¡£¡¡Nothing¡¡can¡¡be¡¡inferred¡¡about



that¡¡which¡¡is¡¡subordinate¡¡to¡¡C£»¡¡something¡¡can¡¡be¡¡inferred¡¡about¡¡that



which¡¡is¡¡subordinate¡¡to¡¡B£»¡¡but¡¡not¡¡through¡¡the¡¡preceding¡¡syllogism¡£



Similarly¡¡in¡¡the¡¡other¡¡figures¡£¡¡That¡¡which¡¡is¡¡subordinate¡¡to¡¡the



conclusion¡¡cannot¡¡be¡¡proved£»¡¡the¡¡other¡¡subordinate¡¡can¡¡be¡¡proved£»¡¡only



not¡¡through¡¡the¡¡syllogism£»¡¡just¡¡as¡¡in¡¡the¡¡universal¡¡syllogisms¡¡what¡¡is



subordinate¡¡to¡¡the¡¡middle¡¡term¡¡is¡¡proved¡¡£¨as¡¡we¡¡saw£©¡¡from¡¡a¡¡premiss



which¡¡is¡¡not¡¡demonstrated£º¡¡consequently¡¡either¡¡a¡¡conclusion¡¡is¡¡not



possible¡¡in¡¡the¡¡case¡¡of¡¡universal¡¡syllogisms¡¡or¡¡else¡¡it¡¡is¡¡possible



also¡¡in¡¡the¡¡case¡¡of¡¡particular¡¡syllogisms¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2







¡¡¡¡It¡¡is¡¡possible¡¡for¡¡the¡¡premisses¡¡of¡¡the¡¡syllogism¡¡to¡¡be¡¡true£»¡¡or



to¡¡be¡¡false£»¡¡or¡¡to¡¡be¡¡the¡¡one¡¡true£»¡¡the¡¡other¡¡false¡£¡¡The¡¡conclusion¡¡is



either¡¡true¡¡or¡¡false¡¡necessarily¡£¡¡From¡¡true¡¡premisses¡¡it¡¡is¡¡not



possible¡¡to¡¡draw¡¡a¡¡false¡¡conclusion£»¡¡but¡¡a¡¡true¡¡conclusion¡¡may¡¡be



drawn¡¡from¡¡false¡¡premisses£»¡¡true¡¡however¡¡only¡¡in¡¡respect¡¡to¡¡the



fact£»¡¡not¡¡to¡¡the¡¡reason¡£¡¡The¡¡reason¡¡cannot¡¡be¡¡established¡¡from¡¡false



premisses£º¡¡why¡¡this¡¡is¡¡so¡¡will¡¡be¡¡explained¡¡in¡¡the¡¡sequel¡£



¡¡¡¡First¡¡then¡¡that¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡draw¡¡a¡¡false¡¡conclusion¡¡from



true¡¡premisses£»¡¡is¡¡made¡¡clear¡¡by¡¡this¡¡consideration¡£¡¡If¡¡it¡¡is



necessary¡¡that¡¡B¡¡should¡¡be¡¡when¡¡A¡¡is£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should



not¡¡be¡¡when¡¡B¡¡is¡¡not¡£¡¡If¡¡then¡¡A¡¡is¡¡true£»¡¡B¡¡must¡¡be¡¡true£º¡¡otherwise



it¡¡will¡¡turn¡¡out¡¡that¡¡the¡¡same¡¡thing¡¡both¡¡is¡¡and¡¡is¡¡not¡¡at¡¡the¡¡same



time¡£¡¡But¡¡this¡¡is¡¡impossible¡£¡¡Let¡¡it¡¡not£»¡¡because¡¡A¡¡is¡¡laid¡¡down¡¡as



a¡¡single¡¡term£»¡¡be¡¡supposed¡¡that¡¡it¡¡is¡¡possible£»¡¡when¡¡a¡¡single¡¡fact



is¡¡given£»¡¡that¡¡something¡¡should¡¡necessarily¡¡result¡£¡¡For¡¡that¡¡is¡¡not



possible¡£¡¡For¡¡what¡¡results¡¡necessarily¡¡is¡¡the¡¡conclusion£»¡¡and¡¡the



means¡¡by¡¡which¡¡this¡¡comes¡¡about¡¡are¡¡at¡¡the¡¡least¡¡three¡¡terms£»¡¡and



two¡¡relations¡¡of¡¡subject¡¡and¡¡predicate¡¡or¡¡premisses¡£¡¡If¡¡then¡¡it¡¡is



true¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡that¡¡to¡¡which¡¡B¡¡belongs£»¡¡and¡¡that¡¡B¡¡belongs



to¡¡all¡¡that¡¡to¡¡which¡¡C¡¡belongs£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong



to¡¡all¡¡that¡¡to¡¡which¡¡C¡¡belongs£»¡¡and¡¡this¡¡cannot¡¡be¡¡false£º¡¡for¡¡then¡¡the



same¡¡thing¡¡will¡¡belong¡¡and¡¡not¡¡belong¡¡at¡¡the¡¡same¡¡time¡£¡¡So¡¡A¡¡is



posited¡¡as¡¡one¡¡thing£»¡¡being¡¡two¡¡premisses¡¡taken¡¡together¡£¡¡The¡¡same



holds¡¡good¡¡of¡¡negative¡¡syllogisms£º¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡a¡¡false



conclusion¡¡from¡¡true¡¡premisses¡£



¡¡¡¡But¡¡from¡¡what¡¡is¡¡false¡¡a¡¡true¡¡conclusion¡¡may¡¡be¡¡drawn£»¡¡whether



both¡¡the¡¡premisses¡¡are¡¡false¡¡or¡¡only¡¡one£»¡¡provided¡¡that¡¡this¡¡is¡¡not



either¡¡of¡¡the¡¡premisses¡¡indifferently£»¡¡if¡¡it¡¡is¡¡taken¡¡as¡¡wholly¡¡false£º



but¡¡if¡¡the¡¡premiss¡¡is¡¡not¡¡taken¡¡as¡¡wholly¡¡false£»¡¡it¡¡does¡¡not¡¡matter



which¡¡of¡¡the¡¡two¡¡is¡¡false¡£¡¡£¨1£©¡¡Let¡¡A¡¡belong¡¡to¡¡the¡¡whole¡¡of¡¡C£»¡¡but



to¡¡none¡¡of¡¡the¡¡Bs£»¡¡neither¡¡let¡¡B¡¡belong¡¡to¡¡C¡£¡¡This¡¡is¡¡possible£»¡¡e¡£g¡£



animal¡¡belongs¡¡to¡¡no¡¡stone£»¡¡nor¡¡stone¡¡to¡¡any¡¡man¡£¡¡If¡¡then¡¡A¡¡is¡¡taken


·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡