按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
1.一般低压断路器的选择
(1)低压断路器的额定电压不小于线路的额定电压。
(2)低压断路器的额定电流不小于线路的计算负载电流。
(3)低压断路器的极限通断能力不小于线路中最大的短路电流。
(4)线路末端单相对地短路电流÷低压断路器瞬时(或短延时)脱扣整定电流≥1。25
(5)脱扣器的额定电流不小于线路的计算电流。
(6)欠压脱扣器的额定电压等于线路的额定电压。
2.配电用低压断路器的选择
(1)长延时动作电流整定值等于0。 8~1倍导线允许载流量。
(2)3倍长延时动作电流整定值的可返回时间不小于线路中最大启动电流的电动机启动时间。
(3)短延时动作电流整定值不小于1。1(Ijx+1。35KIdem)。其中;Ijx为线路计算负载电流;K为电动机的启动电流倍数;Idem为最大一台电动机额定电流。
(4)短延时的延时时间按被保护对象的热稳定校核。
(5)无短延时时;瞬时电流整定值不小于1。1(Ijx+K1KIdem)。其中;K1为电动机启动电流的冲击系数;可取1。7~2。
(6)有短延时时;瞬时电流整定值不小于1。1倍下级开关进线端计算短路电流值。
3.电动机保护用低压断路器的选择
(1)长延时电流整定值等于电动机的额定电流。
(2)6倍长延时电流整定值的可返回时间不小于电动机的实际启动时间。按启动时负载的轻重;可选用可返回时间为1、3、5、8、15s中的某一挡。
(3)瞬时整定电流:笼型电动机时为(8~15)倍脱扣器额定电流;绕线转子电动机时为(3~6)倍脱扣器额定电流。
4.照明用低压断路器的选择
(1)长延时整定值不大于线路计算负载电流。
(2)瞬时动作整定值等于(6~20)倍线路计算负载电流。
二.漏电保护装置的选择
1.形式的选择
一般情况下;应优先选择电流型电磁式漏电保护器;以求有较高的可靠性。
2.额定电流的选择
漏电保护器的额定电流应大于实际负荷电流。
3.极数的选择
家庭的单相电源;应选用二极的漏电保护器;若负载为三相三线;则选用三极的漏电保护器;若负载为三相四线;则应选用四极漏电保护器。
4.额定漏电动作电流的选择(即灵敏度选择)
为了使漏电保护器真正起到保安作用;其动作必须正确可靠;即应该具有合适的灵敏度和动作的快速性。
灵敏度;即漏电保护器的额定漏电动作电流;是指人体触电后流过人体的电流多大时漏电保护器才动作。
灵敏度低;流过人体的电流太大;起不到保护作用;灵敏度过高;又会造成漏电保护器因线路或电气设备在正常微小的漏电下而误动作(家庭一般为5mA左右)。家庭装于配电板上的漏电保护器;其额定漏电动作电流宜为15~30mA左右;针对某一设备用的漏电保护器(如落地电扇等);其额定漏电动作电流宜为5~10mA。
快速性是指通过漏电保护器的电流达到动作电流时;能否迅速地动作。合格的漏电保护器的动作时间不应大于0。1s;否则对人身安全仍有威胁。
三.热继电器的选择
选择热继电器作为电动机的过载保护时;应使选择的热继电器的安秒特性位于电动机的过载特性之下;并尽可能地接近;甚至重合;以充分发挥电动机的能力;同时使电动机在短时过载和启动瞬间【(4~7)IN电动机】时不受影响。
1. 热继电器的类型选择
一般场所可选用不带断相保护装置的热继电器;但作为电动机的过载保护时应选用带断相保护装置的热继电器。
2. 热继电器的额定电流及型号选择
根据热继电器的额定电流应大于电动机的额定电流;来确定热继电器的型号。
3. 热元件的额定电流选择
热继电器的热元件额定电流应略大于电动机的额定电流。
4. 热元件的整定电流选择
根据热继电器的型号和热元件额定电流;能知道热元件电流的调节范围。一般将热继电器的整定电流调整到等于电动机的额定电流;对过载能力差的电动机;可将热元件整定值调整到电动机额定电流的0。6~0。8倍;对启动时间较长、拖动冲击性负载或不允许停车的电动机;热元件的整定电流应调整到电动机额定电流的1。1~1。15倍。
四.接触器的选择
1.选择接触器的类型
接触器的类型应根据负载电流的类型和负载的轻重来选择;即是交流负载还是直流负载;是轻负载、一般负载还是重负载。
2.主触头的额定电流
主触头的额定电流可根据经验公式计算
IN主触头≥PN电机/(1~1。4)UN电机
如果接触器控制的电动机启动、制动或反转频繁;一般将接触器主触头的额定电流降一级使用。
3.主触头的额定电压
接触器铭牌上所标电压系指主触头能承受的额定电压;并非吸引线圈的电压;使用时接触器主触头的额定电压应不小于负载的额定电压。
4. 操作频率的选择
操作频率就是指接触器每小时通断的次数。当通断电流较大及通断频率过高时;会引起触头严重过热;甚至熔焊。操作频率若超过规定数值;应选用额定电流大一级的接触器。
5. 线圈额定电压的选择
线圈额定电压不一定等于主触头的额定电压;当线路简单;使用电器少时;可直接选用380V或220V的电压;如线路复杂;使用电器超过5h;可用24V、48V或110V电压(1964年国际规定为36V、110V、或127V)的线圈。
五.中间继电器的选择
中间继电器一般根据负载电流的类型、电压等级和触头数量来选择。
六.板用刀开关的选择
1.结构形式的选择
根据它在线路中的作用和它在成套配电装置中的安装位置来确定它的结构形式。仅用来隔离电源时;则只需选用不带灭弧罩的产品;如用来分断负载时;就应选用带灭弧罩的;而且是通过杠杆来操作的产品;如中央手柄式刀开关不能切断负荷电流;其他形式的可切断一定的负荷电流;但必须选带灭弧罩的刀开关。此外;还应根椐是正面操作还是侧面操作;是直接操作还是杠杆传动;是板前接线还是板后接线来选择结构形式。
HD11、HS11用于磁力站中;不切断带有负载的电路;仅作隔离电流之用。
HD12、HS12用于正面侧方操作前面维修的开关柜中;其中有灭弧装置的刀开关可以切断额定电流以下的负载电路。
HD13、HS13用于正面操作后面维修的开关柜中;其中有灭弧装置的刀开关可以切断额定电流以下的负载电路。
HD14用于动力配电箱中;其中有灭弧装置的刀开关可以带负载操作。
2.额定电流的选择
刀开关的额定电流;一般应不小于所关断电路中的各个负载额定电流的总和。若负载是电动机;就必须考虑电路中可能出现的最大短路峰值电流是否在该额定电流等级所对应的电动稳定性峰值电流以下(当发生短路事故时;如果刀开关能通以某一最大短路电流;并不因其所产生的巨大电动力的作用而发生变形、损坏或触刀自动弹出的现象;则这一短路峰值电流就是刀开关的电动稳定性峰值电流)。如有超过;就应当选用额定电流更大一级的刀开关。
七.熔断器式刀开关的选择
熔断器式刀开关除应按使用的电源电压和负载的额定电流选择外;还必须根据使用场合、操作方式、维修方式等选用;要符合开关的形式特点。如前操作、前检修的熔断器式刀开关;中央均有供检修和更换熔断器的门;主要供BDL型开关板上安装。前操作、后检修的熔断器式刀开关;主要供BSL型开关板上安装。侧操作、前检修的熔断器式刀开关;可供封闭的动力配电箱使用。
八.开启式负荷开关的选择
1.额定电压的选择。
开启式负荷开关(胶盖瓷底刀开关或俗称胶木闸刀开关)用于照明电路时;可选用额定电压为220V或250V的二极开关;用于电动机的直接启动时;可选用额定电压为380V或500V的三极开关。
2.额定电流的选择
用于照明电路时;开启式负荷开关的额定电流应等于或大于断开电路中各个负载额定电流的总和;若负载是电动机;开关的额定电流应取电动机额定电流的三倍。
九.封闭式负荷开关的选择
额定电流的选择:
封闭式负荷开关(俗称铁壳开关)用于控制一般电热、照明电路时;开关的额定电流应不小于被控制电路中各个负载额定电流的总和。当用来控制电动机时;考虑到电动机的全压启动电流为其额定电流的4~7倍;故开关的额定电流应为电动机额定电流的3倍;或根据下表来选择。
封闭式负荷开关可控制的电动机容量
开关额定电流(A) 15 20 30 60 100 200
可控制的电动机容量(kW) 2 2.8 4.5 10 14 28
十.组合开关(俗称转换开关)的选择
1.用于照明或电热电炉
组合开关的额定电流应不小于被控制电路中各负载电流的总和。
2.用于电动机电路
组合开关的额定电流一般取电动机额定电流的1。5~2。5倍。
十一.熔断器的选择
(一) 熔断器类型的选择
应根据使用场合选择熔断器的类型。电网配电一般用刀型触头熔断器(如HDLRT0 RT36系列);电动机保护一般用螺旋式熔断器;照明电路一般用圆筒帽形熔断器;保护可控硅元件则应选择半导体保护用快速式熔断器。
(二) 熔断器规格的选择
1. 熔体额定电流的选择
(1) 对于变压器、电炉和照明等负载;熔体的额定电流应略大于或等于负载电流。
(2) 对于输配电线路;熔体的额定电流应略大于或等于线路的安全电流。
(3) 在电动机回路中用作短路保护时;应考虑电动机的启动条件;按电动机启动时间的长短来选择熔体的额定电流。对启动时间不长的电动机;可按下式决定熔体的额定电流
IN熔体=Ist/(2。5~3)
式中 Ist——电动机的启动电流;单位:A
对启动时间较长或启动频繁的电动机;按下式决定熔体的额定电流
IN熔体=Ist/(1。6~2)
对于多台电动机供电的主干母线处的熔断器的额定电流可按下式计算:
In=(2。0~2。5)Imemax+∑Ime
注:In熔断器的额定电流;Ime电动机的额定电流;Imemax多台电动机容量最大的一台电动机的额定电流; ∑Ime其余电动机的额定电流之和。
电动机末端回路的保护;选用aM型熔断器;熔断体的额定电流In稍大于电动机的额定电流;
(4) 电容补偿柜主回路的保护;如选用gG型熔断器;熔断体的额定电流In约等于线路计算电流1。8~2。5倍;如选用aM 型熔断器;熔断体的额定电流In 约等于线路电流的1~2。5倍。
(5) 线路上下级间的选择性保护;上级熔断器与下级熔断器的额定电流In的比等于或大于1。6;就能满足防止发生越级动作而扩大故障停电范围的需要。
(6) 保护半导体器件用熔断器;熔断器与半导体器件串联;而熔断器熔体的额定电流用有效值表示;半导体器件的额定电流用正向平均电流表示;因此;应按下式计算熔体的额定电流:
IRN≥1。57 IRN ≈1。6 IRN 式中 IRN 表示半导体器件的正向平均电流。
(7) 降容使用
在20℃环境温度下;我们推荐熔断体的实际工作电流不应超过额定电流值。选用熔断体时应考虑到环境及工作条件;如封闭程度 空气流动 连接电缆尺寸(长度及截面) 瞬时峰值等方面的变化;熔断体的电流承载能力试验是在20℃环境温度下进行的;实际使用时受环境温度变化的影响。环境温度越高;熔断体的工作温度就越高;其寿命也就越短。相反;在较低的温度下运行将延长熔断体的寿命。
(8) 在配电线路中;一般要求前一级熔体比后一级熔体的额定电流大2~3倍;以防止发生越级动作而扩大故障停电范围。
2.熔断器的选择
(1)UN熔断器≥UN线路。
(2)I N熔断器≥IN 线路。
(3)熔断器的最大分断能力应大于被保护线路上的最大短路电流。
十二.无功补偿电容器的选择
补偿后
补偿前COSφ1 补偿到COSφ2时;每千瓦负荷所需电容器的千乏数
0。80 0。84 0。88 0。90 0。92 0。94 0。96 1。00
COSφ1=0。30 2。42 2。52 2。65 2。70 2。76 2。82 2。89 3。18
COSφ1=0。40 1。54 1。65 1。76 1。81 1。87 1。93 2。00 2。29
COSφ1=0。50 0。98 1。09 1。20 1。25 1。31 1。37 1。44 1。73
COSφ1=0。54 0。81 0。92 1。02 1。08 1。14 1。20 1。27 1。56
COSφ1=0。60 0。58 0。69 0。80 0。85 0。91 0。97 1。04 1。33
COSφ1=0。64 0。45 0。56 0。67 0。72 0。78 0。84 0。91 1。20
COSφ1=0。70 0。27 0。38 0。49 0。54 0。60 0。66 0。73 1。02
COSφ1=0。74 0。16 0。26 0。37 0。43 0。48 0。55 0。62 0。91
COSφ1=0。76 0。11 0。21 0。32 0。37 0。43 0。50 0。56 0。86
COSφ1=0。