按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
各种过程而论,这个天然的精确度极限小到可以忽略不计,但是,
当我们所要处理的是在原子或分子这类极微小的力学系统中发生
的过程时,这个极限便变得非常重要了。
1900年,德国物理学家普朗克在从理论上研究物体与辐
射之间的平衡条件时,得出了一个令人惊讶的结论说,这种平衡
是根本不可能达到的,除非我们假设物质与辐射之间的相互作用
并不像我们通常设想的那样连续,而是通过一系列不连续的‘冲
击’来实现的,在每一次这样的基本相互作用中,都有一定量的
能量从物质转移给辐射或从辐射转移给物质。为了达到所要求的
平衡,并且使理论同实验事实相一致,必须在每次冲击所转移的
能量与那个导致能量转移的过程的频率(周期的倒数)之间,引
入一个简单的数学比例关系式。
这样一来,普朗克不得不作出结论说,在用符号h代表这个
比例常数时,每次冲击所转移的最小能量(即所谓量子)可由下
式算出:
E=hν (13)
式中ν是辐射的频率。常数h的数量值等于6.547×10…34焦?秒,
它通常被称为普朗克常数或量子常数。量子常数的数量值极其微
小,这就是我们在日常生活中通常观察不到量子现象的原因。
普朗克这种想法的进一步发展应该归功于爱因斯坦,他在几
年后得出了一个结论说,辐射不仅仅在发射时才分成一个个大小
有限的、分立的部分,并且永远以这样的方式存在,也就是说,
它永远是由许多分立的“能包”组成的。爱因斯但把这种能包称
为光量子。
只要光量子在运动着,那么,它们除了具有能量hν以外,
还具有一定的动量,根据相对论性力学,这个动量应该等于它们
的能量除以光速c。正如光的频率同波长λ之间存在着ν=c/λ
的关系一样,光量子的动量p同它的频率(或波长)也存在着下
面的关系:
p=hν/c=h/λ (14)
由于运动物体在碰撞中所产生的力学作用取决于它的动量,
我们必须作出结论说,光量子的作用随着波长的减小而增大。
最出色地证明存在光量子和光量子具有能量和动量这个想法
的实验事实,是美国物理学家康普顿的研究所提供的。他在研究
光量子和电子的碰撞时,得到了这样一个结果:因受光线的作用
而开始运动的电子的表现,正好同电子被一个具有式(13)和(14)
所给出的能量和动量的粒子击中时相同。光量子本身在同电子碰
撞以后,也显示出发生了某些变化(它们的频率改变了),这也
同量子论的预言非常相符。
我们目前可以说,就辐射同物质的相互作用而论,辐射的量
子性质已经是完全确定下来的实验事实了。
量子概念的更进一步的发展归功于著名的丹麦物理学家N.
玻尔,他在1913年最早提出了这样一个想法:任何一个力学系统
内部的运动只可能具有一套分立的能量值,并且,运动只能通过
有限大小的跳跃而改变其状态,在每一次这样的跃迁中,都会辐
射(或吸收)一定量的能量(等于那两个容许能态之间的能量差)。
他的这种想法是受到当时对原子光谱的观察结果的启发:当原子
中的电子发出辐射时,最后得到的光谱并不是连续的,而只含有
某些确定的频率——线光谱。换句话说,根据等式(13),所发
出的辐射只能具有某些确定的能量值。如果玻尔关于发射体(现
在是原子中的电子)的容许能态的假说是正确的,那么,出现线
光谱的原因就很容易理解了。
确定力学系统各种可能状态的数学法则要比辐射的公式复杂
得多,所以我不想在这里讨论。简单地说吧,如果想圆满地描述
像电子这样的粒子的运动,就必须认为它们具有波动性。这样做
的必要性是法国物理学家德布罗意根据他自己对原子结构的理论
研究最先提出的。他认识到,处在有限空间中的波,不管是风琴
管里的声波,还是小提琴琴弦的振动,都只能具有某些确定的频
率或波长。这些波必须“适应”那个有限空间的大小,并且产生
我们所谓的“驻波”。德布罗意主张说,如果原子中的电子具有
波动性,那么,由于电子的波受到限制(限制在原子核的旁边),
它的波长也只能取驻波所能具有的分立值。不仅如此,如果用一
个类似于等式(14)的方程把上述的波长同电子的动量联系起来,
即
p粒子=h/λ (15)
那么,其结果必定是电子的动量(因而连其能量)也只能取某些
确定的容许值。当然,这就非常清楚地解释了为什么原子中的电
子具有分立的能级,以及为什么它们发出的辐射会产生线光谱了。
在接下来的许多年里,物质粒子运动的波动性已经被无数实
验牢固地证实了。这些实验表明,电子束在通过小孔时所发生的
衍射,以及像分子这样比较大。比较复杂的粒子所发生的干涉,
都属于这类现象。当然,从古典的运动概念的观点来看,对物质
粒子所观察到的这种波动性是绝对无法理解的。所以,德布罗意
本人不得不采纳一种当时看来十分奇怪的观点,认为粒子总是由
某种波“伴随”着,可以说,就是这种波在“指挥”着粒子的运
动。
由于常数h的值极小,物质粒子的波长是异常小的,即使对
于最轻的基本粒子——电子——也是如此。当辐射的波长比它可
能通过的孔径小得多时,衍射效应是微不足道的,这时辐射会完
全以正常的方式通过它。这正是足球可以不受衍射影响改变方向
而直接通过两个门柱之间的间隙射入球门的原因。只有当运动发
生在原子和分子内部那样小的区域中时,粒子的波动性才具有重
要意义,这时它对我们认识物质的内在结构起着决定性的作用。
关于这类微小的力学系统具有一套分立能态的一个最直接的
证明,是弗兰克和赫兹的实验提供的。他们在用带有不同能量的
电子轰击原子时发现,只有当入射电子的能量达到某些分立值的
时候,原子的能态才会发生明确的变化。如果电子的能量低于某
一极限,在原子中就观察不到任何效应,因为这时每一个电子所
携带的能量都不足以把原子从第一个量子态提高到第二个量子态。
因此,在发展量子论这个最初的准备阶段结束时所出现的局
面,不能说是对古典物理学的基本概念和基本原理进行了修改、
而只是用一些相当费解的量子条件对古典物理学施加了多少有点
人为的限制,即从古典物理学中可以出现的无限多种连续的运动
状态当中,只挑选出一套分立的“容许”状态。不过,要是我们
更深入地研究古典力学定律同我们今天扩展了的经验所要求的这
些量子条件之间的联系,我们就会发现,把这两者结合起来所得
出的体系,在逻辑上是不能自圆其说的,并且,这些经验的量子
限制会使古典力学所依据的各种基本概念变得毫无意义。事实上,
在古典理论中,有关运动的基本概念是:任何一个运动粒子在任
何一个指定的瞬时都在空间中占有确定的位置,并且同时又具有
确定的速度,这个速度描述了粒子在轨道上的位置随时间而变化
的情况。
位置、速度和轨道这些构成古典力学整个精致建筑的基本概
念(像我们所有其他概念一样),是在观察我们周围现象的基础
上形成的。因此,一旦我们的经验扩展到从前所没有揭露的新领
域中去,我们就必须像对待空间和时间的古典概念那样,对这些
概念进行重大的修改。
如果我问某一位听众,为什么他相信任何一个运动粒子在任
何指定的瞬时都占有确定的位置,因而能够随着时间的推移而描
绘出一条确定的曲线(即所谓轨道),那么,他大概会回答说:
“这是因为当我观察运动时,我看到它就是这样的。”好,现在
就让我们来分析分析这种形成古典轨道概念的方法,看看它是不
是真的会得出确定的结果。为了达到这个目的,我们可以设想有
一个物理学家,他拥有各种最灵敏的仪器,现在他想追踪一个从
他实验室墙上扔下的小物体的运动。他决定通过“看”这个物体
怎样运动来进行这项观察。当然,要想看到运动物体,就必须有
光照明它。由于他已经知道,光线总是会对物体产生一种压力,
因而可能干扰它的运动,所以,他决定仅仅在进行观察的瞬间才
使用短时间的闪光来照明。在第一组试验中,他只想观察轨道上
的10个点,因此,他把闪光源选得这样微弱,以便使10次顺序照
明中光压所产生的总效应不超过他所需要的精确度。这样,他在
物体下落时让光源闪亮了10次,并且以他所希望的精确度得到了
轨道上的10个点。
现在他想重复这个实验,这一次,他希望得到100个点。 他
知道,如果还用上一次的照明强度, 那么,相继照明100次就会
对物体的运动产生太大的干扰,因此,在准备进行第二组观察时,
他把闪光强度降低为上一次的1/10。在进行第三组观察时,他希
望得到1000个点,因而又把闪光强度降低到第一次的1/100。
他按照这种办法一直进行下去,并且不断降低照明的强度。
这样,似乎他想得到轨道上的多少个点,便可以得到多少个点,
而且可能误差永远不致增大到超过他开始时所选定的限度。这种
高度理想化但在原理上似乎完全行得通的办法,是通过“观看运
动物体”来建立运动轨道的一种严格合乎逻辑的方法。大家都知
道,在古典物理学的框框里,这种方法是完全可行的。
现在我们来看看,如果我们引进前面所说的量子限制,并考
虑到任何一种辐射的作用都只能通过光量子来转移这个事实,那
么,会发生什么情形呢?我们已经看到,我们那个观察者一直在
降低照明运动物体的光的数量,因此,现在我们应该预料到,他
一旦把光的数量减少到只有一个量子,他就会马上发现他不可能
再继续减少下去了。这时,要不是整个光量子都从运动物体上反
射回来,就是根本没有任何东西反射回来;而在后一种情况下,
观察是无法进行的。当然,我们知道,同光量子碰撞所产生的效
应随着光波长的增大而减小,我们的观察者同样也知道这一点,
所以,到这个时候,为了再增加观察次数,他肯定会采用波长比
较大的光来照明,观察次数越多,他所用的波长也越长。可是,
在这一方面,他又会碰到另一个困难。
大家都清楚地知道,在采用某一波长的光时,我们无法看到
比这个波长更小的细节,要知道,谁也没有办法用油漆刷子去画
波斯工笔画啊!因此,当所用的波长越来越大时,我们的观察者
就不能准确地判断每一点的位置,并且他很快就会发现,他所判
断的每一点都由于波长太大而变得同整个实验室一样大,结果,
每一点都变得测不准了。于是,他最后不得不在观察点的数量和
每一点的测不准性之间采取折衷的办法,这样一来,他就永远得
不到像他的古典同行所得到的数学曲线那样精确的轨道了。他所
得到的最好的结果将是一条相当宽的、模模糊糊的带,因此,如
果他根据他的实验结果去建立他的轨道概念,这种概念就会同古
典概念有相当大的差异。
上面所讨论的方法是光学方法。我们现在可以试试另一种可
能的方法,即采用机械方法。为了达到这个目的,我们的实验者
可以设计某种精致的机械装置,比方说在空间中安装一些弹簧,
每条弹簧上有一个小铃,这样,当有物体从它们近旁经过的时候,
它们就会把这个物体经过的路线显示出来。他可以把大量这样的
铃散布在预料运动物体将要经过的空间中,这样,在物体经过以
后,那些“响着的铃”就代表物体的径迹。在古典物理学中,人
们想把这些铃做得多小多灵敏都可以,因此,在使用无限多个无
限小的铃的极限情况下,同样也可以用任意大的精确度构成轨道
的概念。但是,对机械系统施加量子限制,同样会破坏这种局面。
如果铃太小了,那么,按照公式(15),它们从运动物体取走的
动量就会太大,即使物体只击中一个铃,它的运动状态也己大受
干扰了。如果铃做得太大,那么,每一个位置的测不准性又会