友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

惊人的假说 [英]弗兰西斯[1].克里克-第8章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



难菔尽U庵址考渲荒苡玫パ鄞油獠客ü】兹ス鄄臁U庋涂梢耘懦魏瘟⑻迨泳跸咚鳌U飧龇考淇雌鹄聪窀龀し教澹谑导噬纤囊槐吆艹ぁS胝叫畏考湎啾龋囊桓銮浇且叩枚啵怖胛颐窃兜枚唷5蔽以诰山鹕健疤剿髡卟┪锕荨保‥xploratorium)通过小孔观看这样的房间时,我看见一些在房间内跑来跑去的小孩。在房子的一侧他们显得很高(因为这时他们离我很近),而在另一侧则显得很矮(这时他们离得很远)。当他们从一边跑到另一边时(实际上是从近处墙角跑到远处墙角,再跑回来),他们的大小会发生惊人的变化。我当然明白,孩子们是不可能通过这种方式改变身高的。但这一错觉是如此逼真,使我无法立刻摆脱它。每个孩子的表观大小是由墙的虚假透视作用产生的。与其他错觉类似,这一错觉很难通过“自上而下”(即大脑的最高水平对这一错觉形成基础的理解)的作用进行校正。
    另一个有力的线索就是遮挡。即一个靠近你的物体部分地遮挡远处的物体。我们在图5中就已看到过这种情景。一个女孩的面孔位于窗玻璃的框架之后。利用这一线索,大脑就能推断出,被遮挡物的各个不同部分应当属于同一物体,就像本章开头我们讨论过的那样。
    线条能产生两种与遮挡有关的神奇效果。图2所示的卡尼莎三角属于第一种。白色三角形的虚幻边界是由黑色缺损圆盘的直线边界的延伸形成的。另一种效应如图15所示。
    这种情况的幻觉边界主要由于了组线段的端点排成了一条线。机场中的“线”出现的原因有多种,如物体(如衬衫)的图案或斑马的条纹以及阴影等。一个遮挡背景的物体经常会截断背景中的线。在这种情况下,线段端点产生的虚幻轮廓将会勾画出这一物体的轮廓,就像图15那种故意设计的图形那样。正如心理学家拉马参准(V。S.Ramachandran)所说:“虚幻轮廓的感觉可能比真正的轮廓还真实(对我们更重要)。”
    另外一个距离线索是纹理的梯度变化。如图16所示。你只要看到这种草地的图,就会立刻产生草地逐渐离你而去的印象。这是由于,页面上的草叶自下而上逐渐变小的缘故。你的大脑不会将它看成是一面平坦而垂直的墙,在它的下面草长得比较高,而上面草长得比较矮:而是把它看成一个伸向远方的具有均匀高度的草坪。
    还有一些深度线索。一个是物体的表观大小。一个熟悉的物体,当它离我们较远时它在视网膜上的像就会变小。因此,如果该物体的表观尺寸较小,大脑就认为它离我们较远。另一个深度线索是远处的风景通常看起来比较蓝。所有这些线索都被艺术家们所利用,特别是在文艺复兴时期透视现象被发现以后。卡那来特(Canaletto)的威尼斯风景画便是很好的例子。
    让我们转向讨论深度信息的主要来源(1)。它通常被称作“体视”,依赖于双眼观察同一物体时景物图像的微小差异。19世纪中叶,物理学家查尔斯·惠特斯通爵士(Sir Charles Wheatstone)最早向人们清楚地演示,恰当呈现的双眼图像可以给人生动的深度印象。(怀特斯通还有一件趣事使人记忆犹新。有一次他在伦敦皇家学会等待发表星期五晚上演说时,因高度紧张而逃跑。从此以后,每个演讲者都要按惯例在演讲前被锁在一间小房子内等一刻钟。)怀特斯通还发明了体视镜(战后因设计简单而普及)。它使每只眼睛分别观察拍摄角度略有不同的照片成为可能。拍摄位置的差异就会产生并非严格相同的景观。大脑检测两个景观之间的差异(这在技术上称为“视差”),结果使照片上的场景显现出明显的深度感,似乎就出现在你的面前。
    当你观察眼前较近的真实景物时,你可以通过闭上一只眼睛亲自体验一下什么是体视。对大多数人而言,此时的深度感并不像同时使用双眼时那么强。(当然,由于上面提到的其他深度线索的存在,即使闭上一只眼睛,你仍可具有较好的深度感。)另一个明显的例子就是建筑、城市、风景等的写生或摄影。在这种情况下,两只眼睛就能使大脑推断出画面是平面的。实际上,用单眼仍然可以获得较生动的深度感觉。只要你站在一个没有玻璃反光的位置,并用手挡住图画的框架。这些动作去除了图画表面的某些平面线索,使得艺术家在图画中用于表达深度信息的线索产生较强的效果。
    离你较近的物体的体视最显著,因为此时双眼视差最大。显然,要使双眼看到同一物体的景象,物体差不多就要在你的正前方。它不能向一侧偏离太远,而使鼻子遮住一只眼的视线。靠捕食为生的动物如猫、狗等,通常双眼都在前方。这样它们就可以利用体视抓捕猎物。而对于其他动物,如兔子,双眼长在头的两侧更有好处,这样,它们就可以在宽广的视野内发现天敌。但与人类相比,它们的体视能力很有限,因为它们双眼的视野重叠很少。①
    运动情况又怎样呢?视觉系统对运动感兴趣的原因是明显的。当你看电影时,尽管银幕上看到的是一系列快速呈现的静止画面,而你却具有运动物体生动的印象。这种现象称为“表观运动”。在这种相当人为的情况下,视觉系统可能会出现失误。汽车或马车轮子的辐条有时看起来会向相反方向转动。一般说来,它发生的原因已很清楚。这大体上是由于大脑把一幅图像中的一根辐条与下一幅图像中离它最近的那根辐条联系起来引起的。由于轮子在不停地转动,被联系在一起的可能并不是同一根辐条,而是其他邻近的一根。由于所有的辐条看起来完全一样,大脑很可能把相邻两幅图像中两根不同的辐条联系在一起。如果联系在一起的两根辐条所在的位置完全相同(相对于汽车),则轮子看起来就会是静止不动的。如果转速稍微放慢一点,则轮子的辐条看起来就会向后转动。特别是旧式电影中,这种现象时有发生。当汽车减速时,辐条看起来就改变方向(相对于汽车的运动)。心理学家们已经做了大量实验,试图确定获得好的表观运动所需要的条件。
    另外一种运动效应是理发店标志牌错觉(barber's pole illusion)。因为圆柱上有螺旋条纹,当它绕长轴旋转时,条纹看起来不是在转动而是在顺其长轴方向运动,通常是向上运动。(这将在第十一章中作充分讨论J因此,我们的运动知觉并不总是直接的。在这种情况下,你看到的并不是每个条纹的局域运动,而是大脑错误地把它想像为整个模式的全局运动。
    大脑的运动知觉由两种主要过程进行处理。它们可以粗略地被称为“短程系统”和“长程系统”。前者发生在比后者较早的加工阶段。短程系统并不能识别物体,而仅能识别由视网膜接收并传递到大脑的光模式的变化。它可以抽提运动的“基元”,但并不知道是什么物体在运动。换句话说,作为初级的感觉,这种简单的运动信息是有用的。它是自动操作的,即不受注意的影响。
    人们猜测,短程运动可以利用运动信息从背景中分离出图形①并与运动后效应(有时称为“瀑布效应”)有关。(如果你注视瀑布一段时间,然后把注视点很快移到邻近的岩石,在很短的一段时间内,你就会看到岩石向上运动。)现在对此现象还有不同的看法。因为最近的实验显示,运动后效应可以受注意的影响。
    长程运动系统似乎与物体运动的登记(register)有关。它不仅仅登记运动本身,而且还登记是什么物体从一个地方运动到另一个地方。长程运动系统受注意的影响。
    让我们举一个(过分简单的)例子。一个红色方块在屏幕上闪烁很短的时间,再隔一段时间后,在离红方块不远的地方紧接着出现一个闪烁的蓝色三角形。如果时间、距离等参数选取得使长程系统占优势,那么观察者就会看到红方块变成蓝三角并从一个位置移到另一个位置的表观运动。另一方面,如果选择的参数主要激发短程系统(时间间隔和距离都很小),那么观察者将只看见运动而看不见运动的物体。他感受到运动但不知道什么在运动。在大多数情况下,两种系统在某种程度上可能同时起作用。只有精心设计的刺激才会仅仅激活一个系统。
    * * *
    大脑利用运动线索获得变化中的视环境的附加信息。我已经描述过,在某些情况下如何从运动恢复结构,还可以通过其他方式利用运动信息。一个正朝你眼睛跑过来的物体会产生一个逐渐膨胀的视网膜图像。如果一个屏幕上的物体突然增大,你就会感到该物体正向你冲过来(尽管屏幕还在同一距离)。这种视觉图像运动被称为“膨胀”。它产生的效果是如此鲜明,以至人们怀疑大脑中有一个特殊的部位对图像的膨胀加以响应。事实上这个部位已经被发现(见第十一章)。
    视觉运动系统的另一个作用是指导你在环境中运动的方式。当你向前行走时,你的眼睛看着前方,你上下左右的视觉场景就会从你身边掠过。这种视网膜图像的运动被称作“视觉流”(visual flow),在飞机着陆时它对飞行员帮助极大,一个没有体视的单眼飞行员可以借助视觉流信息使飞机安全着陆。没有视觉流的地方是你正朝它运动的那一点。所有围绕该点的物体似乎都向远离这一点的方向运动,尽管它们的速度有所不同(如图17)。这种视觉信息帮助飞行员找到跑道上正确的着陆点。
    颜色知觉也并非像看起来那样直截了当。基本的观点认为它与眼内不同类型的光感受器有关。每种光感受器只对有限波长范围内的光起反应。重要的是我们应当意识到,单个光感受器的反应怎么会不依赖于输入光子的波长。一个光感受器可能捕获一个光子,也可能捕获不到。如果确实捕获到,则不管光子的波长如何,其效果会完全相同。但它响应的概率却依赖于波长。某些波长激活它的概率很大,某些波长则很小。比如,它可以经常对“红”光子起反应,却很少对“绿”光子有响应。
    对输入光子流的平均响应可能对应于敏感波段的少数几个光子,也可能对应于非敏感波段的许多光子;感受器无法分辨它们。初读这些内容时,这一切似乎相当复杂,但已有的经验告诉我们,如果眼睛只有一种类型的光感受器,你的大脑就会失去光的波长信息,因而只能看见黑白的世界。这种情况出现在特别昏暗的时候,这时,被称作“视锥”的一类光感受器不活动,只有“视杆”感受器起作用。这些全是一种类型的光感受器,对所有波长反应相同。这就是为什么在夜晚很暗的情况下,你在花园内看不到花的颜色的原因。
    要获得颜色信息,就需要不只一种具有不同波长响应曲线的光感受器。它们的响应曲线是部分重叠的。但是,一个具有同一波长的光子流,对不同的光感受器引起不同程度的兴奋。大脑利用这些不同兴奋的比例,确定落在视网膜上某点光的“颜色”。
    大家知道,大多数人具有三种视锥细胞(大致是短波、中波和长波锥细胞。它们常被称为蓝、绿、红视锥细胞)。但也有少数人缺少“红”视锥细胞,因此导致部分色盲。①他们在分辨红绿交通信号时可能会碰到困难。
    ***
    这就是对为什么我们能看颜色所作的基本解释。但它还需要进行某些修正。在此,我仅想提一下所谓兰德效应(因偏振片的发明者埃德温·兰德(Edwin Land)而得名)。兰德以戏剧性的方式向我们演示,视野内某斑块的颜色并不仅仅依赖于从该斑块进入眼睛的光的波长,它还与从视场其他部分进入眼睛的光的波长有关。
    为什么会这样呢?进入眼内的信息不仅取决于表面的反射特性(颜色),还与落到该表面的光的波长有关。因此,在阳光下和在烛光下,妇女们色彩缤纷的服装会有很大区别。因此,大脑主要感兴趣的不是反射率和照明光的组合,而是物体表面的颜色特性。大脑试图通过比较眼睛对视野中若干不同区域的响应来抽提出这种信息。要做到这一点,大脑利用了如下约束(假设),即在某一时刻,在该景物的各处,照明光的颜色是相同的。尽管在其他场合,它们可能是明显不同的,如果照明光是粉红色,它就使所有的东西程度不同地变为粉红色。因此,大脑就力图校正它。这就是为什么阳光下的红色纤维在人工照明下看起来依然是红色的原因。但是,正如我们知道的,它看上去并不完全相同,因为校正机制并非工作得尽善尽美。
    下面我们稍微提
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!