按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
经济学家们起初只知道不动点吸引子的稳定平衡。彭加勒把平衡态推广到包括以极限环形式进行的平衡运动。但是,对于像洛仑兹模型(图2.21)中的混沌吸引子,既没有不动点,也没有不变运动,而是一种永不重复的运动。然而,它也是一种有边界的运动,一种非游荡集合,将一定的动力学系统吸引到某个动态平衡的终态。
历史上,20世纪的经济以其增长过程中发生着引人瞩目的崩溃中断为特征。例如,20世纪30年代(大萧条)和70年代(石油危机)。对于增长的结构,要特别关注创新和技术进步。成功创新的扩张,在经验上已经由逻辑斯蒂函数很好地表示出来,本书中在2.4节已经引入了这一函数。递归的表示中可以把整数t看作时间项,增长因子a>0。起初,人们对于创新是全然不熟悉的。然后,随着它被人们接受,它就达到了它的最大扩张速率。再后,随着创新方式完全地结合进经济中,对它的吸收过程就慢慢地减速了。
所形成的曲线示意在图2.22中。对于a≤3,我们获得了某个不动点吸引子,这示意在图2.22a中。对于更大的a,结果形成了一种振荡(图2。22b和图2.24b),然后是一种混饨运动(图2.22c和图2.24c)。对于a>3,周期数随着a的增加而成倍增加(图2.23a),最后它完全变成了混沌(图2.20b)。
创新和经济产出之间的相关如图6.6的模型所示。最初的输出q被看作是平衡的,随着增长速率△k的增加,输出也在逐渐增加。随着创新到达饱和状态,△k也减少到零,输出q跌落到最初的水平。于是,创新刺激出某种繁荣,但也就引出了随后的衰退。创新可以是节省劳动力的。如果每输出单位的劳动输入降低20%,就会引起失业。
人们假定新思想的增长是指数式的,像舒伯特那样的经济学家主张,在一次创新冲动的尾声就将开始一轮新的创新冲动。然后,如果大致以每年4%的速度发生经济系统连续地起作用和技术概念连续地生长,那么就会激起新的一轮繁荣和新的衰退,如此等等。对于经济循环理论,创新是至关重要的,因为在一次萧条中是没有任何的新投资基础的,而新的投资又是引出新的扩张所必需的。
一些新的思想平稳地产生出来。当足够多的思想积累起来以后,就会引进一组新的创新。它们最初的发展是缓慢的,然后随着方法的改进而得以加速。逻辑式发展标志了这种典型的创新轨迹。引入一种创新必须要有某种超前投资。投资刺激了需求。增长的需求促进了创新的传播。于是,随着所有的创新都已经被充分发掘,减速过程就将导致零增长。
熊彼特把这种现象称作创新“游泳”。在他的三循环模型中,第一个短循环相应于资本循环,创新在此不起作用。下一个较长循环相应于创新。熊彼特承认历史统计学的显著性,并把长周期波动的证据与诸如蒸汽机、炼钢、铁路、轮船和电力这些最重要的创新联系起来,注意到它们完全地结合进经济中需要30…100年。
一般地,他描述了以“集群”形式发生的技术进步引起的经济进化,并在逻辑斯蒂框架中来解释。一次技术集群被假定为以循环方式把一种平衡态转移为一种新的不动点。所形成的新的平衡,其特征是更高的真实工资、更高的消费和产出。但是,舒伯特的分析忽略了一个根本性问题:有效的需求决定着产出。
从历史上看,20世纪30年代的大萧条促成了提出经济的商业循环模型。不过,最初的模型(例如汉森…萨缪尔森的模型和郎伯格…米兹勒模型)都是线性的,因而也就需要外在的冲击来解释其不规则性。标准的经济方法论为这种传统进行辩解,尽管循环分析在数学上发现了奇怪吸引子以后就已经成为可能。在非线性系统框架中,重新表述关于20世纪30年代的大萧条的传统线性模型并不困难。
米兹勒模型是由两个演化方程来决定的。在第一个方程中,产出的变化率q正比于实际资本S与所希望的资本S’之间的差。所希望的资本正比于产出。第二个方程中涉及资本的变化率s,其产出q小于需求。需求正比于产出。由这两个演化方程决定的动力学复杂系统,将产生出简单的其振幅不断增加的谐运动。
如果以某种非线性方式将这个系统扩展,就会导致另一种不同的行为。第三个方程中考虑到净公共剩余和赤字的反常行为。目的是要产生出有若干年周期的循环。运用所谓的茹斯勒带,提出了一种数学模型。人们得到了一条莫比乌斯带,它是自上而下翻转后只给出一面的带子(图6.7a)。追随一条轨迹,由外圈扩展到右上方。然后,它折叠起来,并随着向下运动而收缩为一个内圈,如此等等。图6。7a给出了一个两维的投映,显示了这两个循环。轨线倾向于聚集在其间的空的空间。如果将此模拟继续下去,这些带子就变得越来越稠密。
图6.7a是一个简单而著名的混沌(“奇怪”)吸引子的例子。尽管其中每一轨迹都是精确地由演化方程所决定的,但它却是难以长期计算和预测的。在蝴蝶效应的意义上,起始条件的微小偏离,将引起轨迹途径的巨大变化。图6。7b示意了态空间中一条为期15年的输出轨迹,对此已在计算机实验中选择一些参数进行了模拟。图6。7c示意了作为相应的时间系列的发展。
这种高度飘忽不定的行为完全是由内在系统产生出来的,没有任何的外在冲击。在经济学中,时间系列的不规则性通常是用外在冲击来解释的。但是,它们仅仅是武断的预先假设,因此是可以解释任何事物的。从方法论的观点看,其中有混沌吸引子的混沌内在模型表现得更令人满意。然而,内在的非线性模型与带有外在冲击的线性模型都必须严肃地取自经济学,并在经济学中受到检验。
显然,一个经济系统包含了许多相互关联的和相互独立的部分,既有内在动力学也有外在影响力。一个国家的经济越来越受到世界经济运动的作用。在一个经济系统内,也有具有特定动力学的多种市场。它们受到循环的影响,例如,每年的太阳循环就决定着农业、旅游业或燃料市场的状况。因此,铁业循环和建筑循环也都是人们熟知的经济例子。因此,内在非线性并受外力冲击波的系统才是现实的经济模型。受扰动的混沌吸引子或一种超混沌,给人留下了深刻印象。正是经济事件具有飘忽不定的特征,给经济人员带来了严重的困难,他们不得不面对不可预见的未来而进行决策。
在2.3节中,我们已经看到,自组织的复杂系统可以是保守的或是耗散的。在图2.14a,b中示意了它们的不同类型的吸引子。一些为人们熟悉的自然科学中的保守的或耗散的模型都已经运用于经济领域。1967年,哥德温提出一种保守动力学模型,以使得19世纪的阶级斗争思想精确化。他考虑了一种由工人和资本家所组成的经济系统。工人将其全部收入都用于消费,而资本家则将其全部收入都储蓄起来。哥德温运用的是作了某些修订的洛特卡和沃尔特拉的捕食者…被捕食者模型,那个模型已在3.4节中作了描述。
哥德温的保守模型支持了这样的观点:资本主义的经济将处于不断的振荡之中。因此,轨迹描述了封闭轨道,如图3.11b所示。哥德温的模型受到了批评,批评者认为它只是表面上的,因为该模型并未直接涉及资本家和工人的职务收入份额或他们群体的大小。但是,主要是由于它的保守特征,使得哥德温的模型看来在经济上是不现实的。该模型把互不相干的一组假设放在一起,而假设之间的相互影响没有得到反映。
因此,加入“经济摩擦”假设,就使这个模型更为现实了。在生物学中,耗散的洛特卡…沃尔特拉模型已示意在图3.11c中,其中有一个吸引子。一个耗散系统总是具有吸引子或排斥子,其形式包括不动点、极限环或奇怪吸引子。由于耗散系统具有不可逆的时间进化,任何种类的回溯预测都是排除在外的。
现实中,人们不可能将一个动力学系统与其他动力学系统割裂开来考虑。因此,在2.2节中,我们研究了耦合的吸引系统,例如两个时钟(图2.11a,b)。组合系统的态空间由一个环形圆纹曲面代表(图2.11c,d)。整个系统的动力学,由环形圆纹曲面上的轨迹和向量场的相图来表示。
一个耦合振荡系统的经济模型,可以由国际贸易来提供。设想一个简化了的只有总投资和储备的单种经济的宏观经济模型,其总投资和总储备依赖于收入和利率。这个系统的动力学依赖于关于收入的演化方程,收入由市场上对物品的过度需求来调节,第二个演化方程是关于利率的方程。这些方程以模型中产生出内在振荡的方式构成了一个非线性振荡子。
3种经济的相互作用,例如,可以用3个独立的二维极限环来加以描述。如果这3种经济都处于振荡中,该系统的总运动就构成了一种三维环形圆纹曲面的运动。非线性振荡子的耦合可以理解为对三维环形圆纹曲面上的自主经济运动的扰动。这种耦合程序已经应用到了几种经济实例中,诸如国际贸易模型、商业循环模型和独立市场。
当允许自组织的经济系统受到政治干预的影响时,就出现了至关重要的实际政策问题。在某些情况下,市场是不可能按照福利标准来发展的。如果让经济自由放任,它就可能出现涨落波动的特征。如果不考虑经济增长的复杂性和非线性,政策措施可以对这样的倾向产生相反的效应。
对于经济突变带来的巨大社会和政治后果,已经在凯恩斯主义和新凯恩斯主义的框架中讨论过若干种政策措施。例如,当代的财政政策可以被看作一种动力学控制。它应该可以减少经济涨落的幅度。但是,战后的经验已经表明,希望把涨落减少到零是不可能的,也不可能保持就业率不变。而且,一项好的政策总是需要相当的时间来收集数据、分析结果并提出相应的立法和行政措施。结果是,任何政策当它起作用时可能就已经过时了。因此,在复杂的非线性的经济世界中,一项政策措施可能会是完全无用的。
例如,当假定的经济动力学及其政策干预的时间途径过于简单时,凯恩斯的收入政策就可能是无效的。在复杂系统的框架中,经济政策措施可以被解释为对于振荡系统施加紧急的外部作用力。因此,它不可能排除掉经济系统出现混沌现象。在物理学中,受迫振荡是人们所熟悉的。例如,如果一个像钟摆那样的动力学系统(图2.5)处于振荡中,并且受到外力的周期性影响,那么,由于振幅不断增加、振荡总体衰减以及完全的无规则性,其结果就可能是不可预见的。
从古典经济学到现在,商业循环理论的目标一直是建立起具有规则涨落的经济系统的动力学。按照线性力学的观点,实际的商业循环可以用规则系统来建模,对其可以再加上随机的外部冲击,而这种冲击又必须或多或少用适当的经济学假设来说明。当然,对于一个模型,当它的基本性质是由外部力量来决定的,这些外部力量又没有合理的经济学解释,这样的模型就是很难令人满意的。如果一个实际的系统是非线性的、混沌的,可能影响其经济动力学的外部作用力的进一步的信息也就可能是多余的。从方法论的观点看,按照奥卡姆的格言entia non suntmultiplicanda sine necessitate[无必要就不增加(理论)实体〕,他的著名剃刀应该用来切除这些多余的关于经济学的预先假设。
从一个实际工作人员的观点来看,他究竟是面对一个随机的线性过程还是一个混沌的非线性过程的问题,这是一个离题的问题。这样的两种系统都使得他难以作出精确的预测。由于混沌模型敏感地依赖于起始条件,任意精确的数字计算机也不可能计算出这种系统的长期的未来演化。轨迹将指数地发散。另一方面,他却相信,面对着系统的过于复杂的行为,随机的外部冲击是可以放弃的。
然而,具有混沌时间序列的非线性系统却并不排除局部的预见性。如果非线性系统的吸引子可以加以重构,那么数字技术就允许以足够高的精确度对系统的短期进化作出预测。短期经济预测可以是复杂系统理论在经济学中的一种有趣的应用,不过这也仍然处于其婴儿期。
对于经济学模型来说,经济学从一开始就遇上了经验检验和确证的严重方法论问题。这与自然科学中可以进行任意多次