友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

物理学和哲学-第32章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  首先谈一谈因果性。我们从色散关系知道,物质的相互作用遵循因果律。这句话的严格的数学表述或许还不完全知道,但我们有可靠的理由认为相互作用可以表述为局部的相互作用,比如就象在量子电动力学中那样。非局部的库伦力同这句话是相容的。从这样一种状况出发,说极高密度物质的研究应该给出关于这种局部相互作用的最直接的信息,从而也给出关于物质的动力学的最直接的信息,这似乎是合理的。    
  在中子星中,密度和原子核是同一个数量级。在这样的密度时,说原子核由若干核子组成还是有意义的。因为以小量的能量——与一个原子核的静止质量相比是小的——就足以把一个质子或一个中子从原子核中打出。核子在原子核中相互距离仍然很远,即它们的相互作用能量比它们的静止质量小。这在中子星中同样正确,因此有可能对这样的星体物质的状态方程作出估计。可是,如果密度还显著提高,例如在更大质量的恒星中由于引力收缩,那末恒星由什么粒子组成的问题就没有确定的意义了。提供给一个粒子的空间将小于它的正常大小,因此它不可能具有它的正常质量;相互作用是如此强烈,以致粒子通常不在它们的质量壳层上。换句话说,人们只能说所有粒子的一种混合物,而这时说它是连续物质则更为合理。正是这种连续物质的动力学行为是粒子物理学中的基本问题。    
  如果不仅能够得到关于中子星中的状态方程的更多信息,而且特别是还能得到关于更高密度恒星中的状态方程的更多信息,那末这对于理解物质的动力学行为就会是极端重要的。究竟是宇宙辐射中的观测还是天体物理学的更广阔领域的观测会更有用处,对此我不能作出判断。我只想强调这个问题的重要性。    
  宇宙辐射中还有另一个特殊领域,在这个领域里关于物质的动力学这个问题可以从一个完全不同的方面来着手处理。如果两个极高能的粒子相碰撞,那末,在碰撞的最初的瞬间,就会有一个物质密度极大的小盘,然后它发生爆炸,并且随着它的密度的减小,最后蜕变为许多粒子。这就是众所周知的粒子的多重产生的过程,碰撞的粒子的能量愈高,这种过程当然就愈有意义。如果原始宇宙线粒子有10 7 亿电子伏,那末在碰撞中,开始时的盘的密度可以比中子星中的密度大一千倍。    
  由此可见,这种极高能量的宇宙线簇射行为的研究会给出关于物质动力学的很有价值的信息。这方面令人感到鼓舞的是,在欧洲原子核研究中心的储存环中和在巴达维亚加速器中,人们似乎已经到达渐近区,或者至少已接近渐近区。对于这个区域中碰撞的初始阶段,初级粒子可以简单地形象化为连续物质云,其密度在表面按照指数的比例而下降。这个模型解释了总截面作为能量增加的函数是对数增加的。我还要指出两类实验的特征性的差别,一类是在极密的恒星上,另一类是在很高能粒子碰撞后的盘上。在第一种场合,引力起重要作用,在第二种场合,引力是不重要的。因此这两类实验能够给出两种不同类型的有关信息。    
  在结束时我要回到我报告开始时提到的一般问题,我或许应当说,宇宙辐射在整个物理学领域中的特殊作用是基于两类事实的。这种宇宙辐射含有最小尺度物质行为的信息,而且也对我们关于宇宙——最大尺度的世界——结构的知识作出了贡献。这两个极端都是不可能直接观测到的,它们只能用很间接的推理来考查。在这里,日常生活的概念必须代之以别的相当抽象的新概念。只有这样,我们才会懂得象“极端”或“无限远”这类词在涉及自然界时能够有什么意义。在这个意义上,宇宙辐射仍可以(不管实验形式有什么变化〕称为一门很浪漫的、很鼓舞人心的科学。    
  '译自西德《自然科学》(Die Naturwissenschaften)    
  1976年2月号,许良英校'           
《物理学和哲学》 
W·海森伯著 范岱年译       
译后记    
   本书作者韦纳尔·卡尔·海森伯(Werner Karl Heisenberg,1901…1976)是当代最卓越的理论物理学家和原子物理学家之一。1976年,物理学家维格纳在悼念海森伯的文章中说:“没有一个活着的理论物理学家在这个领域内比他贡献更大。”海森伯是量子力学的创始人之一。他为原子、原子核、基本粒子物理学的发展奋斗了终生。他是继玻尔之后的哥本哈根学派的主要代表人物。     
  海森伯平1901年12月5日生于德国维尔茨堡。原子物理学也正是在这前后诞生和开始发展起来的。1911年他到慕尼黑上中学。1919年他首次接触到原子概念。1920年他进入慕尼黑大学随原子物理学家索末菲等学习物理学。卓越的物理学家泡利是他的同学和挚友。    
  索末菲虽然是一个杰出的物理学家,但不是一个哲学家。他在1922年写信给爱因斯坦说:“我只能促进量子的技术,您必须研究它的哲学。”所以,海森伯不能从索末菲那里学到量子论的哲学,他是以后从哥本哈根学派的首领玻尔那里学到量子论的哲学的。    
  1922年6月,玻尔到哥丁根大学作有关原子的量子论和元素的周期系的一系列讲演,这被称之为“玻尔的节日”。海森伯也随老师索末菲前去听讲。在一次讲演会中,二十一岁的大学生海森伯对原子物理学权威玻尔关于塞曼效应的解释表示了不同的意见,引起了玻尔的注意。会后,玻尔邀海森伯一起散步长谈。海森伯回忆说:“这是我能够回忆起来的关于现代原子理论的基本性物理学问题和哲学问题的第一次透彻的讨论,它当然对我以后的生涯有决定性的影响。我第一次理解到玻尔关于原子理论的观点远比当时其他物理学家——例如索末菲——的观点更具有怀疑论的精神,而他对理论结构的深刻理解不是对基本假设作数学分析的结果,确切地说是由于大量占有关于实际现象的材料,从而使他有可能直观地理解现象之间的联系,而不是从这些现象形式地推导出其间的关系。……玻尔首先是一位哲学家,而不是一位物理学家,但是他理解我们当代的自然哲学只有当它的每一个细节都能够经受得住无情的实验检验时才是有力量的。”尽管海森伯从不自认为唯物论者,但在我们看来,他的上述论点是完全符合自然科学的唯物主义传统的,这对他一生的科学工作确实有决定性的影响。    
  在索末菲的指导下,海森伯通过对湍流的研究于1923年7月获得了博士学位,之后就到哥丁根大学作玻恩的助手。1924年3月,他第一次访问了哥本哈根。7月,他在哥丁根大学取得授课的资格。1924年底到1925年初,他到哥本哈根在被尔指导下从事研究。以后,他又回到哥丁根。1925年6月,他在因枯草热病到海利戈兰特疗养期间第一个创建了矩阵力学——量子力学的一种形式体系,发表了题为《关于运动学和力学关系的量子论的重新解释》的一篇物理学史上划时代的论文。    
  在创建矩阵力学的过程中,海森伯遵循了自然科学的唯物主义传统。他从原子物理学大量实验结果(主要是原子光谱中里兹组合原则、弗兰克…赫兹的原子电子碰撞实验、玻尔频率关系等〕所揭示的辐射和原子能级的不连续性(即量子性)出发来建立他的理论,又以实验结果来检验他的理论。结果表明,量子力学不仅能够解释旧量子论能够解释的实验结果,还能够解释旧量子论所不能解释的许多实验结果(例如氦光谱特征、带光谱中半量子数的存在、光电子的连续空间分布和放射性蜕变现象等)。    
  海森伯创建矩阵力学的指导思想是“在原子领域内,经典力学不再有效”。他反对他的老师玻尔、索末菲等先验地把经典力学中的位置、速度、轨道概念强加给原子中的电子,而主张代之以原子光谱的频率、波长、强度等可观测量。他这样做,自称是受到马赫的实证论哲学的影响。实际上他在这里是应用了经验论,反对了唯心论的先验论。    
  海森伯的矩阵力学应用并推广了玻尔提出的对应原理。对应原理要求:量子理论得到的结果对于大量子数应当收敛于经典力学得到的那些结果。从1918年到1925年,玻尔等物理学家在旧量子论中运用对应原理,通过天才的猜测和人为的拼凑,已得到许多重要的结果。海森伯的重大贡献是把对应原理推广到整个力学体系。当量子数很大或普朗克常数可以略而不计时,量子力学的公式就趋近于经典力学的公式。这样,海森伯就把猜测性的、零散的量子论发展成为一个逻辑一贯的、严密的形式体系。它反映了原子层次微观客体的基本运动规律,并揭示了它与宏观客体基本运动规律之间的联系。    
  在海森伯首创矩阵力学以后,他又和玻恩、约尔丹协作,继续努力发展矩阵力学。1926年,奥地利的卓越物理学家薛定谔在德布罗意的物质渡假说的基础上,将波动力学与经典力学的关系类比于物理光学与波动光学的关系,从而创建了波动力学,提出了以他命名的薛定谔方程。以后不久,薛定谔又证明海森伯、玻恩、约尔丹创建的矩阵力学和波动力学是等价的,可以通过数学变换从这种形式转化为另一种形式。同年,波恩指出了薛定谔方程中的fai 函数可以给出大量微观客体性状的统计分布或是单个微观客体具有某种性状的几率。    
  1927年 3月,海森伯发表了《量子论运动学和力学的直观内容》一文,提出了著名的测不准关系(又名不确定原理〕。海森伯不回避矛盾,敢于承认微观客体具有波粒二重性,它们不同于经典物理学中的粒子,也不同干经典物理学中的波,应用经典的波或粒子图象来描述微观客体时,必须受到测不准关系的限制。    
  接着波尔就提出了互补原理。这个原理认为,对于微观客体,波动图象和粒子囹象是互相排斥的,但是又相互补充。关于微观客体位置的知识和动量的知识(又如时间的知识和能量的知识)是互补的概相互排斥,又相互补充人关于原子事件的时空表示和它的决定论性因果描述是互补的(既相互排斥,又相互补充,即统计地关联起来)。关于互补原理的作用,至今仍存在许多不同的意见。但它承认矛盾的两极,多少有点辩证法的因素,对冲破经典物理学中机械决定论观念的束缚也起了积极作用。海森伯在1958年也曾指出:“在量子论的认识论分析中,尤其是在玻尔所给予它的形式中,还包含着许多会使人想起黑格尔哲学方法的特征。”    
  1927年秋,26岁的海森伯成为莱比锡大学理论物理学教授,被人称为“德国最年轻的教授”。在他和德拜周围,先后聚集了一批杰出的青年物理学家物布洛赫、供特、派埃尔斯、斯莱透、泰勒、韦斯科夫、威札克尔等五、六十人,我国物理学家王福山也曾在莱比锡学习〕。他们把量子力学推广应用到分子结构理论、原子核物理、固体物理、金属的电磁性等等方面,作出了巨大的成绩,犹如一次所向披靡的凯旋进军。海森伯本人就在铁磁性理论方面作出了重要贡献。莱比锡的这支队伍成了哥本哈根学派的重要支柱。    
  1929年,海森伯曾到美国、日本、印度讲学,1930年出版了以芝加哥讲演稿为基础的《量子论的物理原理》一书,宣扬量子论的“哥本哈根精神”,在国际物理学界有广泛的影响。他成了以被尔为首的哥本哈根学派的主要代表人物。    
  1932年5月,英国物理学家查德威克发现了中子。接着海森伯和两个苏联物理学家分别独立地提出了原子核由中子和质子组成的理论。就在这一年,海森伯因创建量子力学(矩阵力学)和提出测不准关系而获得诺贝尔物理学奖。    
  1933年,希特勒上台,给德国的科学带来深重的灾难。许多杰出的犹太族科学家受到残酷迫害,纷纷逃亡。莱比锡的科学队伍也逐渐离散。爱因斯坦创建的相对论被当作犹太人的物理学险遭取缔。“运动物体中时间的延缓被批评为荒谬的和纯理论的思辨”。1937年,海森伯因支持相对论也遭到纳粹分子的攻击。那时,海森伯正从事宇宙线的研究。他根据相对论,认为1937年发现的μ子的蜕变时间应当同它的速度有关。实验结果证实了这个预言,“从而为〔大学中〕开设相对论课程开辟了道路”,所以海森伯“对μ子总是怀有感激之情”。    
  1942年,海森伯担任柏林
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!