按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
个小的灰色图形。在第一个蓝色场上面是一个圆,在第二个蓝色场上面是一个环,而在第三个蓝色场上面则是一个较大的圆周,圆周上排列着12个小圆。这些图形的大小是这样的,灰色的总量在所有三个蓝色场中是一样的。现在,根据累积理论,这三种图形应当在不同程度上看上去带点黄色,最后一个图形的黄色最多,而第一个图形的黄色则较少,因为在最后一个图形中,灰色部分与蓝色部分处于密切的接触之中,每一个小圆都被蓝色完全包围起来了,而在第一个图形中,一个相对来说大块的灰色,比较而言是远离蓝色的。然而,事实与这种解释不符,第一个图形,也就是完整的圆,看来最黄,而最后一个图形,则黄色最少。正是那个具有最大聚合力的图形成为最有色彩的图形,这是一种新的迹象,它表明组织程度与着色之间的密切关系。
当然,下述事实并不互相矛盾,即在威特海默…贝努西的实验中,紧密聚合的图形是着色最少的,可是,在这里,它却是着色最多的,因为在该实验中,由巨大聚合所实施的一致性必须是中性的一致性。而在海德夫人的实验中,一致性和中性颜色之间没有这类联结。
另一个实验极具独创性,它由威特海默设计,并由本纳利(Benary)实施,后来经过W.H.迈克塞尔(Mikesell)、M.本特利(Bentley)和J.G.詹金斯(J.G.Jenkins)等人的修订而重复做了实验,以一种新方式揭示了组织之力。他们表明,一个(行为的)图形中的力不同于图形界线以外的力。在图12a和b中,有一个小的灰色三角形,它在两个图形中均一致,它位于一个大的黑色三角形(a)上,或者位于一个黑色十字(b)的两臂之间的壁龛处。两个小三角形均在黑色和白色处接界。实际上,小三角形在图a中比之在图b中,它的邻近处有更多的白色,a是从b那里产生的,办法是剪去一些黑色部分,正如图C所示。因此,根据海林的对比理论,小三角形在图a中看上去应该比在图b中更暗一些,可是,实际上在图b中看上去比在图a中更暗一些。原因是显而易见的。从现象上讲,在图a中,三角形位于黑色上,而在图b中,三角形则位于白色上,但是,不论属于黑色还是白色,这个问题完全是一个组织问题,而不是接近刺激的几何分布问题。这是因为,在两种图形的每一种图形中,与之相一致的接近刺激由三个同质的区域构成,这三个同质区域彼此之间都不相同;每一个同质区域在行为空间中产生一个特定的单位,我们已经知道是组织的一种结果。毋庸置疑,这些单位的相互关系是组织过程的产物。因此,对特定的场部分(field-part)的依赖意味着屈从于将该场部分聚合在一起的力,也就是使场部分成为一个整体,并或多或少防御来自场外的力。如果假定这种孤立是完全的,那就错了。本纳利原先的实验,以及后来的实验者所作的贡献,都证明这些力也是有效运作的,其结果,如前所述,已经由本纳利和美国学者用各种不同的图形加以证实了。
这一实验不仅证明了统一和分离的力的现实,而且也证明了形状的现实。小三角形在一种情形里存在于较大的图形内部,而在另一种情形里则存在于较大的图形外部,这究竟是怎么一回事?答案是:因为在图a中,整个大三角形(小三角形是其中的一部分)是一个充分平衡的良好形状(good form);单单黑色部分的形状则是较不令人满意的。与此相反的是,在图b中,那个没有小三角形的十字形比之包括小三角形的十字形更是一个良好形状。换言之:组织有赖于最终的形状。在若干几何学上可能的组织中,那个具有最佳形状和最稳定形状的组织实际上将会发生。当然,这不是别的,而是我们的简洁律(law of prag…nance)。
形状的其他一些直接效应
我们已经阐释了有关形状的第一个直接效应。现在,我们将引用更多的实验证据,以便证明组织过程中明显的直接效应。在威特海默…本纳利的实验中,这种效应发生在稍微复杂一些的条件之下,也就是比我们开始时的条件复杂一些;在这一实验中,不是具有两个同质场,以及两个同质场之间的质的飞跃,而是具有三个这样的场。为了回到更为简单的情形中去,我们将再次讨论油的例子,该例于假定,油在具有相等的特定密度的液体中呈现球状,如果油与该液体不相混和的话。让我们来问下列问题:如果在不同的物质内,某种物质的球状分布是最稳定的,那么,当一个同质场内出现任何一种形状时,为什么我们看不到一个球体,或至少一个圆呢?(我们可以把球体排斥在外,因为我们假设,在我们的实验中,条件是这样的,即把一切颜色过程集中于一个平面上。)但是,为什么我们看不见一个圆呢?答案十分简单,并将引导我们走向一个有关形状现实的新证明中去。一滴油之所以成为球体,是因为周围液体的结构无力去阻止它屈从于它自己表面上的力和它自己内部的力。就周围的液体而言,任何一种形状将与任何一种其他形状一样理想。然而,当我们用白色表面上的一个不规则黑点去刺激我们的眼睛时,视网膜上建立起来的条件(它使整个过程得以启动,并使其继续发展)确实对过程的最终分布的形状产生影响,这种影响在我们上述的油的球体例子中是不存在的。这是因为,刺激不仅决定了产生于白色之中的黑色的量——如果它确实仅此作为的话,那么,我们应当期望看到一个圆,而不管那个点的形状如何——而且还决定了随之而来的分布的十分明确的空间关系。过程分布的动力形式有赖于刺激分布的几何形式。
两种组织力量:外力和内力
在我们的心物情形中,我们有两种力,一种力存在于分布本身的过程之中,而且倾向于在这种分布上面印刻最简单的可能形状,还有一种力存在于这种分布和刺激模式之间,它们限制朝着简单化方向发展的应力。我们把后面这种力称作组织的外力(extermal forces of organization),而把前面这种力称作组织的内力(internal forces of organization),这里所谓的外部和内部,涉及与我们所见到的形状相一致的整个过程的那个部分。
如果这个假设正确的话,那么,只要这两种力沿同一方向运作,例如,如果我们的点具有圆形,则我们应该期望十分稳定的组织。与之相反,如果这些力处于强烈的冲突之中,那么,由此产生的组织便很少稳定。我们能否证明这些结论呢?
以这种区分为基础的实验
这种证明的一般原理是容易识别的。我们必须展示不规则的图形(这些不规则的图形将产生刚才描述过的冲突之力),并观察其结果。在我们挑选的图形和一般的实验条件中,我们可以追求两个目的,使那些阻止稳定组织的力变得很小,或者使它们变得很大。在第一种情形里,我们期望组织的内力变得足够强大,以便去克服这些外力;而在第二种情形里,我们期望不稳定的终极产物(end-products),也就是说,被见到的图形在我们注视它们时发生改变,或者被见到的图形完全未被清晰地组织。实验程序选择了第一种程序方式,并在同样的特定条件得到满足时予以一些偶然的观察。现在,我们就来讨论这些结果。
外力是强的
一开始,我们将尽可能密切关注这一刺激情形,我们原先就是以这种刺激情形起步的,也就是说,在较大的同质场中的一点可以在不受时间限制的情况下加以注视。在这种情形里,由视网膜产生的力特别强。如果我们把这些力引入组织内力的激烈冲突中去,将会发生什么情况?为此目的,我们展示了一滴墨渍,尽可能使之产生不规则的轮廓。结果是颇为令人沮丧的。除非我们的墨渍很大,否则它看上去十分清楚和稳定,并具有它的一切不规则性。我们从这一结果中可以得出什么结论呢?首先,它证明了决定之力的强度,为了一个更好的组织而防止较大的位错(dislocation)。毋须任何其他的证据,我们便可以作出这样的假设:这些视网膜的力是唯一运作的力,我们的知觉不过是视网膜刺激模式的几何学投射而已。但是,甚至用不着进一步的知识便可知道,这种假设与观察是颇不一致的。这是因为,当我们看到这样一种不规则的斑点时,我们实际上并不以同样方式看到其整个几何形状。我们首先看到的是一个一般的形状,在轮廓上或多或少地对称,然后看到一些凹进和凸出的东西,这些凹凸形状干扰或改变了这种一般的轮廓;这是一种决不会包含在几何图形中的区分,但却是我们打算寻找的那些组织之力的结果。我承认,单凭这点证据是不足以证明我们的论点的。让我们稍稍深入地分析一下我们的结果,以便看到我们能否发现为什么关于组织的内力的任何一种值得注意的结果未能出现。我们把下述的话作为证据,即外部的组织之力排除了部分的任何一种较大的位错。让我们假设,较小的位错是有可能的。现在,在许多完全不规则的图形中,部分的小型位错不会使它们更加规则起来,因此,没有任何理由说,为什么在这些条件下它们应当发生。但是,这个论点把我们引向一个新的实验:我们把客观图形设计成这种样子,小的位错也可以使图形变得更加规则。当你不带任何批判眼光去看图13,以便把它看作一个整体时,你便会看到一个图形,虽说它不是一个圆,但是也与一个圆差不了多少。实际上它是一个有12只角的多边形,而非一个完全规则的多边形,因为只有4只中心角恰好是30度,其余的角都略为少于或多于30度。这里,将一些部分沿正确方向稍作位错,便会产生一个更加规则的组织,而且这些位错确实在这里发生了;你们看到了一个规则的图形。
证明这个同样结果的另一种方式是使我们的斑点十分接近于一个正方形,譬如说,两个底角只有89度,而两个顶角则分别为91度。只要人们对它并不十分仔细地审视,便可将这个图形视作一个正方形。
像上例表示的内部组织之力的有效性的证明,实际上在我们的生活中每时每刻都发生着。我们被矩形的事物所包围,它们在我们看来都呈矩形。甚至当我们不考虑透视畸变(perspec-tive distortion)的事实时,这些例子中的每一个都是手中的一个论点:这是因为,哪一种真正的矩形是数学上确切的矩形呢?通常,比起我们上述的那个图形来,偏差将会相当小,但是偏差存在着,尽管我们仍然看到完美的矩形。现在,下述的论点将会遭到异议,即在我们的日常生活情形里,角度之间的差异如此之小,以致于成为阈下(subliminal)的了。但是,这种异议证明了什么?譬如说有两只角,一只为90度,另一只为90.5度,这两只角从阈下角度上讲有所差异,实际上看来十分相似,但是,这并不意味着它们看起来一定都像直角,它们实际上被看成直角那样;就阈限(threshold)的事实而言,两者看上去至少有点像纯角。因此,这种异议根本不是什么异议,事实上,我们到处见到的矩形是由于下述事实,真正的矩形比起稍稍不确切的矩形来是一个组织得较好的图形,将后者变为前者只需很少的位错。
但是,我们可以用另一种方式来证明在强烈的外力条件下组织的内力。我们可以不让这些内力产生实际的畸变现象,而使它们完整,并以这种方式与外力发生冲突。图14可被视作一个很不规则的形状,但也可视作两个一致的和对称的形状,其中一个形状部分地倚着另一个形状。在后者的情形里,线条好像在所见的形状中被指明,对于这种所见的形状,没有一种刺激的变化与此一致。因此,由整个黑暗区域的同质刺激所产生的统一之力被分离之力所克服,这些分离之力来自形状完整的图形的统一,两个图形中的每一个图形比起一个具有同质着色的不规则图形来应该说是一个更好的形状。如果转换这两个图形的相对位置,以便使它实际上看来不可能是两个图形,这样做还是容易的。当一个图形比我们的图形更简单时,便可做到这一点,或者当其中之一的突出部分不是一个部分图形的独特部分时,也可以做到这一点。
外力是弱的
现在,让我们转到实验中积累起来的证据上来。在这些实验中,外部的组织之力在强度上减弱。为此目的,采用了若干不同的方法:(1)短时展现;(2)低强度;(3)