按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
(3)αnF(m)=
公式(3)在两个方面不同于公式(2):第一,它所断言的涉及毗邻节段αn的序列,不是交迭节段α(n)的序列。第二,它不包含符号F’,而包含符号F。这意味着,根据蕴涵它断言邻近节段序列也是似机遇或随机的;因为从F,即客观概率的定义仅涉及似机遇序列。
(3)所回答的在邻近节段序列中性质m的客观概率问题——即αnF(m)的值的问题——,我效法von Mises,称之为“Bernoulli问题。对于这个问题的解决,从而对于第三个二项式公式(3)的推导,假定α是似机遇或随机的也就够了。(我们的任务等于说明特殊的乘法定理适用于一个随机序列α的毗邻节段序列。)
公式(3)的证明可用两步实现。首先,我们证明公式(2)不仅适用于交迭节段α(n)的序列,而且也适用于毗邻序列αn的序列。第二,我们证明后者是“绝对自由的”。(这两步的次序可以颠倒,因为交迭节段α的序列肯定不是“绝对自由的”;事实上,这种序列提供了一个可称之为“具有后效的序列”的典型例子。)
第一步。毗邻节段αn的序列是α(n)的子序列,它们可通过正态顺序选择从α(n)中获得。因此如果我们能证明在交迭序列α(n)F’(m)中频率的极限不受正态顺序选择的影响,我们就是已经采取了第一步(以及甚至走得更远一点);因为我们将证明这个公式:
(4)αnF’(m)=α(n)F’(m)
我将首先以n=2为例概述这个证明;即我将证明
(4a)α2F’(m)=α(2)F’(m)(m≤2)
为真;因此很容易概括这个公式以适用于一切n。
从交迭节段α(2)的序列中,我们能够选择毗邻节段的两个以及仅仅两个不同的节段α(2);一个用(A)表示,包含α(2)的第一,第三,第五……节段,即由数1,2;3;4;5,6;……组成的α的元素对另一个用(β)表示,包含α(2)的第二,第四,第六,……,节段,即由数2,3;4,5;6,7;……等组成α的元素对。现在假定公式(4a)不适用于两个序列中的一个,(A)或(B),结果节段(即对)0,0太经常出现在比方说序列(A)中;于是在序列(B)中必须出现一个余离差(plementary deviation);即节段0,0将不很经常出现(“太经常”,或“不很经常”是与二项式公式相比较而言的)。但是这与所假定的α的“绝对自由”是矛盾的。因为如果0,0对在(A)中出现比在(B)中更经常,那么在α的足够长的节段中,0,0对在某些表示特征的间距内出现比在其他间距内出现更经常。如果0,0对属于两个α2序列中的一个,更为经常出现的间距就是那些占优势的间距,如果0,0对均属于两个α2…序列,不那么经常出现的序列就是那些占优势的序列。但是这与所假定的α的“绝对自由度”是矛盾的;因为根据第二个二项式公式,α的“绝对自由度”意味着,在任何α(n)序列中一个特定的长度为n的序列出现的频率只依赖在该序列中出现的1和0的数目,而不是依赖它们在序列中的排列。
这证明(4a);由于这个证明能容易推广到任何n,(4)也就得到证明;这就完成了证明的第一步。
第二步。αn序列是绝对自由的这一事实可用一个类似的论据来说明。我们仍可以首先只考虑α2序列;而就这些序列而言,开始只会证明它们的自由度为1。设两个α2序列中的一个,即节段(A)并不是自由度为1。那么在(A)中,在至少由两个元素(一个特定的α对)组成的一个节段之后,比方说在0,0节段之后,另一个节段比方说1,1,必须比如果(A)是“绝对自由的”时更为经常地跟随着;这就是说,节段1,1出现在根据先行节段0,0从(A)中选择的子序列中的频率比二项式公式使我们期望更大。
然而,这个假定与序列α的“绝对自由度”是矛盾的。因为如果节段1,1在(A)中跟随节段0,0过分经常,那么通过补整(pensation),相反情况也必须出现在(B)中;因为否则四个一组0,0,1,1在α的一个足够长的节段中,会太经常地出现在某些特征性间距内——即在如果所说的两对属于同一α2序列就会占优势的那些间距内。此外,在其他特征性间距内,四个一组会不那么经常地出现——即在那些如果它们均属于两个α2序列就会占优势的间距内。因此我们面临的正好是与以前同样的情况;而且我们能用类似的考虑证明,假定事件在一些特有的间距内优先发生,是所假定的α的“绝对自由度”是不相容的。
这个证明又可加以推广,结果我们可以说α序列不仅自由度为1,而且对每一个n,自由度为n,因而它们是似机遇的,或随机的。
这就完成了我们对这两步的概述。因此我们现在有权在(4)中用F代替F’;这就是说,我们可以同意这个主张:第三个二项式公式解决了Bernoulli问题。
顺便说一句,我们已证明交迭节段的序列α(n)不受正态顺序选择的影响,只要α是“绝对自由”时。
这同样适用于毗邻节段序列αn,因为从αn中作的任何一个正态顺序选择可被认为是从α(n)中作正态顺序选择;所以它必须应用于序列α本身,因为α与α(1)和α1都是等同的。
因此我们也还证明了,不受正态顺序选择的影响是从“绝对自由度”——它意指不受某一特殊类型的邻域选择的影响——中得出的必然结论。容易看出,更进一步的结论是不受任何“纯”邻域选择(即根据它的邻域的某个恒定的特征——不随元素序数而变化的特征——进行选择)的影响。最后它的必然结论是“绝对自由度”蕴含着不受这两类选择的所有组合的影响。
61.大数定律(Bernoulli定理)
在假定我们能使n趋向极限。即n→∞的条件下,Bernoulli定理,或(第一)“大数定律”可以用纯粹数学的推理从第三个二项式方式中推导出来。所以它能断言的只是无限的序列α;因为正是仅仅在这些序列中αn…序列的n…节段长度能无限增加。并且它能断言的只是这些“绝对自由”的序列,因为正是仅在假定对每一个n自由度为n的条件下,我们能使n趋向极限,n→∞。
Bernoulli定理提供了十分类似我曾(效法von Mises)称为“Bernoulli问题”的一个问题,即αnF(m)的值的问题的解。正如第56节所表明的,一个n…节段可说具有性质“m”,当它正好含有m个1时;因此在这个(有穷)节段内1的相对频率当然是m/n。我们现在可定义:α的一个n…节段有性质“△p”当且仅当它的1的相对频率与αF(1)=p的值,即1在序列α中的概率的离散不超过δ;这里δ是我们任意选取的接近于0的任何小的分数(但不同于0)。我们能用下列说法表示这个条件:一个n节段有性质“△p”,当且仅当'…p'<δ时;换言之,节段具有性质‘△p’。现在Bernoulli定理回答了频率或概率值的问题,在αn序列内这种节段——具有性质△p的节段的值的问题;因此它回答了αnF(△p)值的问题。
人们在直观上可以猜测:如果值δ(δ>0)是固定的,如果n增加,那么具有性质△p的这些节段的值,因此αnF(△P)的值,也将增加(并且它的增加将是千篇一律的)。Bernoulli的证明(在任何一本概率计算教科书中都可以找到这种证明)接着下去便是借助二项式公式来评价这种增加。他发现如果n的增加没有极限,αnF(△P)值便逼近最大值1,不管&的固定值有多少。这可用下式来表示。
(1)
F(△p)=1(对任何△p值)
这个公式从改变毗邻节段序列的第三个二项式公式而来。对于交迭节段的序列,类似的第二个二项式公式用同样的方法直接导附相应的公式。
(2)
F’(△p)=1
这个公式对于交迭节段序列以及从它们之中作正态顺序选择是正确的,因此对于具有后效的序列(Smoluchowski曾研究过这些序列)也是正确的。公式(2)本身产生(1),假如所选的序列不交迭,所以自由度为n。(2)可描述为Bernoulli定理的一种变式;而我在这里将要就Bemoulli定理所说的话经过必要的修正(mutatis mutandis)以适用于这种变式。
Bernoulli定理,即公式(1),可用下面的话表示。让我们称从一随机序列α中选择的长度固定的一个长的有穷节段为一“中等样本”(fair sample),当且仅当在这个节段内1的概率,即在随机序列内1的概率值与p的离差只有某一小的固定的分数(我们可以自由挑选这个分数)。因此我们可以说,只要我们使这些节段有足够长,偶然碰到一个中等样本的概率如我们所喜欢的那样逼近于1。
在这个表述中,“概率”(或“概率值”)一词出现两次。在这里如何解释或翻译它?在我的频率定义的意义上,这词不得不翻译如下(我将“概率”一词译为频率语言的两种译法用黑体表示):所有足够长的有限节段中绝大多数有“中等样本”;即它们的相对频率与该随机序列频率值p的离差为一任意固定的很小的量;或简言之:频率p近似地实现在几乎所有足够长的节段中。(我们如何达到p值与我们现在的讨论是无关的;比方说它可以是一种假说性估计的结果。)
记住Bernoulli频率αnF(△p)一成不变地随节段的长度n的增加而增加,一成不变地随n的减少而减少,所以,相对频率值在短的节段中实现是比较罕见的,我们也可说:
Bernoulli定理说明,“绝对自由的”或似机遇的序列的短节段经常表现在与p有比较大的离差,因此有比较大的涨落,而较长的节段,在大多数情况下,将表现出随长度的增加与P的离差越来越小。结果,在足够长的节段中大多数离差将变得如我们希望的那样小;换言之,大的离差将变得如我们希望的那样罕见。
因此,如果我们取随机序列的一个十分长的节段,为了通过计算或也许利用其他的经验的和统计的方法,求在它的子序列内的频率,那么在大多数情况下我们将得到如下结果。有一个特征性平均频率,使整个节段中以及几乎所有的长的子序列中,相对频率与这个平均值的离差很小,如果我们挑选的子节段越短,较小的子节段的相对频率与这个平均值的离差就越大和越经常,这个事实,即有穷节段这种可在统计学上得到确定的行为,系指它们的“拟收敛行为”;或系指这样的事实:随机序列在统计学上是稳定的。
因此,Bernoulli定理断言,似机遇序列的节段较小,经常表现为大的涨落,而大节段总表现恒定或收敛;简言之,我们在小节段中发现无序和随机,在大节段中发现有序和恒定。“大数定律”式所指的正是这种行为。
62.Bernoulli定理和概率陈述的解释
我们刚刚看到,用言语表述的Bernoulli定理中“概率”一词出现了两次。
频率理论家在两种情况下根据它的定义翻译这个词没有困难:他能对Bernoulli定理和大数定律提供一个清楚的解释。主观理论的拥护者也能以它的逻辑形式做到这一点吗?
想把“概率”定义为“理性信仰程度”的主观理论家,当他把“……的概率如我们希望的那样逼近1”这些话解释为“……几乎是确定无疑的”时,他前后完全一致,并且有权这样做。但是当他继续说:“……相对频率与它最可几的值p 的离差小于一定量……”,或用Keynes的话说,“事件出现的比例与最可几的比例p的离散小于一定量……”时,他只不过模糊了他的那些困难。这听起来似乎蛮有道理,至少乍一听来是这样。但是如果在这里我们也把“可几的”(有时省略)一词,用主观理论的意义加以翻译,那么整个问题变成这样:“相对频率与理性信仰程度p值的离差小于一定量几乎是确定无疑的,”我认为这是十足的废话。因为相对频率只能与相对频率作比较,只能与相对频率有离差或没有离差。很清楚,在演绎Bernoulli定理之后,把一个不同于演绎之前给予p的意义给予它是不允许的。
因此我们看到主观理论不能用统计学的大数定律来解释Bernoulli定理。统计定律的推导只有在频率理论的框架内才有可能。如果我们从严格的主观理论出发,将永远达不到统计陈述——即使努力填补同Bernoulli定理