友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

格式塔心理学原理 作者:[德]库尔特·考夫卡黎炜译-第29章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




异议,事实上,我们到处见到的矩形是由于下述事实,真正的矩形比起稍稍不确切的矩形来是一个组织得较好的图形,将后者变为前者只需很少的位错。

    但是,我们可以用另一种方式来证明在强烈的外力条件下组织的内力。我们可以不让这些内力产生实际的畸变现象,而使它们完整,并以这种方式与外力发生冲突。图14可被视作一个很不规则的形状,但也可视作两个一致的和对称的形状,其中一个形状部分地倚着另一个形状。在后者的情形里,线条好像在所见的形状中被指明,对于这种所见的形状,没有一种刺激的变化与此一致。因此,由整个黑暗区域的同质刺激所产生的统一之力被分离之力所克服,这些分离之力来自形状完整的图形的统一,两个图形中的每一个图形比起一个具有同质着色的不规则图形来应该说是一个更好的形状。如果转换这两个图形的相对位置,以便使它实际上看来不可能是两个图形,这样做还是容易的。当一个图形比我们的图形更简单时,便可做到这一点,或者当其中之一的突出部分不是一个部分图形的独特部分时,也可以做到这一点。
  外力是弱的

画出。图
15显示了这样的系列图形,最后一个图形是实际展示的,其他几个图形是被试连续作画的再现产品。接下来的两个图形,也就是图16和图17的图形,取自格兰尼特(Granit)1921年的一篇文章。格兰尼特使用了与林德曼相似的方法,但是,他并不要求连续作画。图16的第一个图形是原始的展示图形,另一个图形是由一名

形。尽管我们将在后面讨论这些条件下发生的组织过程,但我们仍想在目前的讨论中分析一下这个例子和类似的例子(来自其他研究者的例子),这是因为,根据形状简化的观点,这些例子是与其他例子一致的。图
17显示了一个原始图形和由两名不同的成人画的再现图形。

    在格兰尼特的例子中,图形的简化如同林德曼的例子。林德曼还使用了另外一种方法,以便证明在短时展现的条件下简单形状所具有的更大的稳定性。林德曼的方法是以不同的时间间隔展示一个圆和一个椭圆的各个部分。在这些条件下,椭圆开始变形,譬如说,变成了橡树果实般的形状,然而,圆却一点也未受影响,或者,当展示时间的差异太大时,圆形被分解为两个部分。

    最后,让我们回顾一下在前面描述过的哈特曼的实验。实验中,一个图形展现两次,两次之间有一个短的时间间隔,而且实验中测量到的整个展现时间正好使该图形呈现为一个整体,没有闪烁。业已发现,当所见的形状是两种可能形状中较简单的一种时,在两种不同形状中所见到的一种刺激模式更容易融合起来。根据我们目前的了解,并与我们先前的结论相一致,我们可以作出解释,即较简单的图形中的内部应力比较不简单的图形中的内部应力小,这种减弱了的内部应力促使两个过程融合成一个过程。

    有关减弱强度的实验早在1900年就由亨普斯特德(Hemp-stead)在铁钦纳(Titchener)的实验室中完成了:把一些图形投放到一块适度照明的屏幕上,一个具有可变开口的节光器在幻灯机和屏幕之间转动。通过逐步增加节光器的开口,图形便变得越来越清晰。如果开口开到最小一档,便什么图形也看不见了;当图形首次开始呈现时,与刺激模式相比,它是明显变形的,变得更加简单,更加对称,具有圆角而非尖角,空隙闭合了,甚至连一般的形状所要求的线条在临时填补的刺激中也不复存在。沃尔法特(Wohlfahrt)曾经用过一些图形,开始时把这些图形的尺寸不断缩小,缩小到看不见的程度,然后再把图形逐渐放大,由此,沃尔法特发现了颇为相似的结果;他强调现象的不稳定性,这种现象的不稳定性好似图形的一种直接可观察的特性;它们看来充满了内力,这些内力在图形内部导致实际的颠簸和跳跃。

    所有这些实验充分证实了我们的期望。如果外部的组织之力较弱,那末内部的组织之力便会十分强大,足以产生相当大的位错,结果导致更为稳定的形状。如果这些图形变得更加稳定的话,则这些力甚至可以产生新的物质过程;新的线条可能被增添上去,对此现象,我们将在稍后加以详细研究。

    现在,让我们转向后象的实验。后象发生在刺激被移去以后,而且,在最简单的情形里,可用同质的面去取代后象。这种情况必须由力来加以解释,它们产生自神经系统中原始发生过程的结果。人们可能会想到可逆的化学反应过程,物质已被分解,分解后的产物现在却重新自行结合起来,通过可逆过程形成了原先的物质。无论如何,这些力完全存在于有机体内部,它们的地位不再受外部能量的影响,从而可以更加自由自在地重新安排自身。由歌德(Goethe)描述的一个古老的观察(人人皆可重复的观察)证实了这样的结论:一个正方形的后象将逐渐失去其尖角,并变得越来越圆。

成简单的形状,那么后象要么成为较好的形状,要么若干线条根本不会在后象中出现。第一种情况为一个实验所证实,如图
18所安排的两根平行线那样。如果两根线出现在后象中,那么它们彼此之间的置换便会大大减弱,结果形成一个不完全菱形的两条边。然而,通常情况下,这两条线并不同时出现,而是彼此交替地出现;这就把我们带到了第二种可能性上面,图19的图形是说明这种可能性的更好例子。图19a提供了一个清晰而又完整的后象,而图19b却并非如此。这里,要么是那根最接近于凝视点的线出现了(在我们图中用X作为标记),要么是两条线交替出现,但是,图19b的四条线却与图19a的四条线相一致。

    这些实验证明了形状的影响,从而也证明了组织的内力在整个组织过程中的运作。
  外力减弱至零

    1.盲点实验

    我们眼睛的解剖结构允许我们再跨前一步,并将外力减至绝对的零。在鼻骨一侧离视网膜中央凹大约13度的地方,有一所谓的“盲点”(blind

水平范围大约为
6度,它的最大的垂直范围则略微大一些。甚至在单眼视觉中,我们的现象空间也不出现空洞(hole),这一事实引起生理学家和心理学家的长期兴趣,而且进行了许多实验,以确定在盲点区域能看到什么东西。有关这些实验的理论解释经常受到含蓄假设的妨碍,这是一种恒常性假设(constancy
  hypothesis)的特例,即在一组特定的条件下发生的事情也肯定会在所有条件下发生。如果没有这种假设的话,倒是不难把各种实验数据整理出头绪来的。为了我们的目的,只须回顾一下一个实验便够了,那就是沃克曼(VoIkmann,1855年)和威蒂奇(Wittich,1863年)的实验。把一个十字架形状的东西用下列方式呈现,它的中心落在盲点上,而十字形的两臂则伸至视网膜的敏感区里面。在这些条件下,可以看到完整的十字。当十字形的两臂具有不同的颜色时,十字形的中心便以两臂的任何一种颜色显现,主要显现在水平的两臂颜色中。我们在这里举一个很能说明问题的例子,十字形的蓝色垂直臂穿过红色的水平臂,这里,十字形中心呈现红色,尽管客观上它是蓝色的。如果有人转动该十字形,使蓝色臂呈水平状,那么,十字形中心便也显现蓝色。这种水平臂的优势可以得到过度补偿(over
  pensated),如果有人把垂直臂搞得相对长一点的话。

    那末,这些结果意味着什么?第一个实验表明,心物过程的领域要比受刺激区的领域更大。因此,未受到直接刺激影响的心物场的这个部分所发生的事情,并不有赖于组织的外力,而是完全由组织的内力来决定,这些内力是在直接刺激引起的那些场事件之间获得的。正如图20所示(空白的中央部分与盲点的未兴奋区域相一致),这些场事件并不处于平衡状态,但是,由于以下事实,即没有外力去决定在它们的中心将发生什么事,因此,它们可以而且将会产生一个完整的“十字形组织”,平衡便是在其中获得的。如果十字形的两臂颜色不同,那么,水平臂将决定中心的颜色,因为水平臂部分地落在视网膜区域,这个区域更加中心,功能上更加有效,所以,比起垂直臂来,它将被组织得更好,看上去更清楚。当然,水平臂占支配地位可能有其他原因;尽管如此,这种支配作用也可以通过在其他方面使垂直臂更具印象而得到克服。因此,中心的组织有赖于组织外部有关部分的力;在这一例子中,我们已经把组织的内力孤立起来了。

    2.偏盲实验

    盲点方面的实验有一个欠缺;它的位置如此接近边缘,以致于在盲点邻近地区看到的物体无法清晰地被组织。与中央相比,视网膜边缘的这种劣势是一种组织的劣势,如同其他的组织劣势一样,这种组织的劣势可以与劣势的色彩视觉结合起来。因此,如果我们在视觉中枢开展一些类似的实验,由于视觉中枢没有因为清晰性的缺乏而使观察难以实现,那么,这将产生许多好处。这一可能性是由某些病理性例子提供的,主要由于大脑损伤,致使视野的一半变成全盲。这类偏盲(hemianopsia)的病例已被仔细研究过,这主要归功于波普尔路特(Poppelreuter,1917年),他首先发现,在盲点中观察到的图像的填充(ple-tion),可以很容易地在偏盲者视野的一半盲区中得到证实。我将在这里报告富克斯(Fuchs)的一些实验,他证实了波普尔路特的发现,但是,却为它们提供了一种解释,这种解释在当时(1921年)是全新的,这就是我们在上面提供的关于盲点效应的解释。用偏盲者进行的这些实验,如果它们是去揭示效应的话,必须以短时展现的方式进行,不然的话,病人就会移动眼睛,从而使效应受到破坏。对许多偏盲者来说,尽管不是全体偏盲者,由我们的盲点实验所揭示出来的这种现象也出现了。我们选择的一名病人,他的双眼在视野左侧是看不见东西的,也就是说,对这位病人而言,在其凝视线左方的空间中看不见测试的物体。接着,我们向病人展现一个完整的圆,让其凝视该圆的中心。嗣后,病人报告说,他已经看到一个完整的圆。然而,由于只有实际的圆的右半部与他对圆的知觉有点关系,因此,我们可以移去圆的左半部,效应仍可保持一样。同样的实验也可以用其他图形来重复实施,例如正方形、椭圆形、星形等等。但是,只有用一个八角星才可能使展现的面积少于一半;如果用其他图形的话,那么展现的面积必须超过一半,病人才能看到整体;于是,一个正方形必须展现四分之三的面积,甚至更多。

    现在,这些图形既单一又熟悉。图形的填充可能既由于它们的单一性(simplicity),又由于它们的熟悉性。只有在第一种情况为真时,这些实验才能证明形状对组织的影响;如果熟悉性成为决定因素,那么我们就不得不放弃我们的解释了,至少在这些例子中是如此。然而,富克斯的实验结果明确地作出了有利于第一种选择的决定。比起第一种情况所提到的那些图形来,不论先前是多么熟悉,不论在特定的实验中有过多少练习,非单一性的图形是不可能被填充的。字母,单词,一条狗的图片,一张脸,一只蝴蝶,一个墨水台,以及诸如此类的东西,都以同样负性的成功(negative
  success)进行了试验。病人认出了这些物体中的每一个物体,但是报告说它们都不是完整的。

    于是,富克斯的这些实验为简单形状中的自发组织提供了完美的证明,一个在当时对格式塔理论有巨大价值的证明。
  我们结论的普遍性:归纳

    在把单位形成和形状作为组织的动力方面确立起来以后,我们现在便可以在新的刺激条件下对它们进行追踪。我们创设的关于两个不同同质区域的条件(一个区域被另一个区域所围住)是一种人为的实验,差不多与我们的完全同质刺激的第一个条件不相上下。然而,这两种人为条件为我们提供了对组织中有效因素的重要顿悟。我们在这里可以提出一个问题,即在这些人为条件下获得的结果能在多大程度上被概括。我们在这里无法恰当地讨论归纳的普遍性问题,也即证明下述的论断是正确的:从有限的例子中得出适用于一切可能例子的结论。但是,我们可以就我们自己的程序说几句话。根据对少量例子的分析,使我们得出结论:分离和单位形成的力产生自两
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!