友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
九色书籍 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

格式塔心理学原理 作者:[德]库尔特·考夫卡黎炜译-第53章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



朔堋T谟行┑胤剑庑┝姆掷氲男朔芸隙ɑ岜涑梢恢至蹋绻桓鑫锾宓囊浦梅⑸幕埃灰簿褪撬担加谧蹲聪赴械男朔懿荒鼙舜吮3址掷耄匦肴诤希╢used)起来。由于在我们的例子中,它们在性质上和接近性上是相等的,因此这些神经过程将以巨大力量相互吸引,以致于它们的最终融合可从我们的前提中推论出来。

而两者之间的一些点,如
i1、i2……等等,均代表中间的锥状细胞。由此,网膜边缘发生的事件,即最终引起可见运动过程的事件,能以这种方式来予以描述。首先,在很短时间里(eA)A将受到刺激;然后,是一个很短的间歇(PA-i1),在这很短的间歇中,没有任何刺激发生;接着是刺激i1,嗣后又是另一个沉寂的间歇期,如此等等。按照我们的理论,在i1开始的兴奋与在A处开始的兴奋相融合。现在,让我们用一定量的时间eA先对A进行刺激,接着是一段沉寂的间歇期PA…2,这样一来,eA
  和PA-2之和便等于光点以中等速度从A到Z通过所花的时间。那么,Z点上的兴奋会不会仍然与A点上开始的兴奋相融合呢?这一论点把我们从普通运动知觉引向断续运动知觉(perception
  of stroboscopic motion)。在最简单的一种断续实验中,我们先在A处呈示一个物体,然后,经过一段间歇期,又在Z处呈示另一物体,于是,相继地进行短时刺激的只有两个点,与两个邻近的锥状细胞相比,这两个点相隔更远。
  断续运动和实际运动

    历史上,这个可见运动理论首先是由断续运动发展而来的「哈特曼(Hartmann),苛勒,1923年a〕,在该领域中,由肖尔茨(Scholz)开展的一项专门调查证明了这一点。两种相继过程之间的融合产生自它们之间的吸引。这种力量的实际存在为下列事实所表明:两根断续展现的线条比起两根特久展现的线条,前者的出现彼此之间相隔较短距离,而且当它们在最适宜的运动中被见到时,其距离的缩短量达到最大值。

    按照这一理论,断续运动问题在于建立一些条件,在这些条件之下,两个(或两个以上)分离的兴奋之间的融合便发生了,或者,当吸引对被吸引过程的影响足以使它们移置时(尽管这种吸引还不够有力以产生融合),便会产生这种现象,即两者或两者中任何一者被看到沿该路径的部分运动(威特海默的双重和单一的部分运动)。以这种方式进行阐述,断续运动问题与实际运动问题没有什么不同,正如我们已经看到的那样,在实际运动中,分别开始的过程也一定会发生融合。但是,由于在实际运动中,相互作用过程之间的空间距离十分之小,以致产生了很强的吸引力,结果使其他因素与它们相比就显得较小,并难以证明,而这些其他因素在断续运动中发挥更加重要的作用,在那里,由于过程之间的较大距离,力量显得较弱了。关于这些其他的因素,我提及一下时间的决定因素,也就是说,展现的时间和间歇;我还想提及一下强度(或者,更好的提法是,图形和背景之间的梯度),也就是说被展现物体之间的距离,它们的大小和形状。我们将在后面对它们进行讨论。

    现在,让我们回到理论上来。断续运动和“实际”运动是基本相似的,这是对该理论有利的一个有力论点。要对一个静止物体通过与另一个物体的相对移置而“诱导”运动(induced

而实际上它们是这样安排的,即两个点是重合的)。在特定条件下,断续移置中的闭合物体可能实际上表现为静止的,而被闭合物体(由于相继展现在同样地方)却包含了整个运动。在这种情况下,两个空间上相距甚远的刺激的融合并不导致运动,而两个空间上一致的刺激的融合却导致了运动。然而,这样做没有任何困难,因为按照我们最一般的原理,运动有赖于两个或两个以上场物体之间的相对移置,而对这些场物体如何构造不作任何限制。邓克尔所提及的实验说明了实际运动和断续运动基本相似。
  似动速度:布朗实验

    现在,让我们更为具体一些,不是去调查运动本身,而是去调查具体意义的运动。运动是有方向和速度的,两者反映在力学和经验中。如果我们考虑实际运动的知觉,那么,看来没有什么问题;人们期望,似动速度(apparent
  velocity)在心理学的可能范围内等于实际速度,或者简单地依赖实际速度。这里,所谓心理学的可能范围是指阈下和阈上之间的范围。然而,J.F.布朗(J.F.Brown)的著名研究表明,这种观点是错误的。我们目前暂不考虑由这个问题(实际速度被我们选作我们的标准)产生的困难,物体本身的速度,即距离刺激,或者物体的视网膜意像的速度,即接近刺激,都呈现出:只有当距离刺激与观察者处于同样距离时,这两样东西才会紧密一致;这是因为,与同一种距离速度相一致的视网膜速度随距离而成反比地变化。但是,暂且撇开这个问题不谈,布朗已经表明,一个被看作运动的物体,它的似动速度有赖于场和物体本身,也就是说,有赖于物体的大小和方向,而且,如前所述,也有赖于运动的方向(1928年,1931年)。在他的实验中,两种速度必须相互匹配。在两个光圈的孔径(diaphragrn
  aperture)后面,图形被看作处于运动状态,这种运动是由两个旋转的鼓引起的,在鼓的上面一卷卷有图形的白纸伸展着,以形成没有尽头的带子。在每一次实验时,标准带子的速度保持不变,然而,可变物体的速度则发生变化,直到观察者判断两种速度相等为止。看上去相等的两种客观速度的关系便成为对客观速度和主观速度之间的关系的一种测量。

    为了给这一程序提供一种具体想法,我将详细地描述一个实验。标准物和可变物都位于同样的距离,除了带子和图形以外,场是同质的(黑暗的房间,从后面照明的旋转带子);标准物S的光圈孔径为15×5平方厘米;可变物B的光圈孔径为7.5×2.5平方厘米;标准物上面的图形是一些1.6厘米的圆,彼此之间的直径间距为4厘米,而可变物B上面的图形是一些0.8厘米的圆,彼此之间的直径间距为2厘米。总之,B的大小恰恰等于S大小的一半。在S中,速度用VS表示,是10厘米/秒,而在B中,平均速度用VB表示(7名被试),它看来与VS相等,是5.25厘米/秒,VS/VB=1.9,或者近似等于人这意味着:如果在一个同质场中,一个图形在所有线条维度方面是另一个图形的2倍,那么在这个图形中运动的物体看上去具有同样的速度,如果客观上它们的速度是(或近似于)较小图形中运动物体的2倍的话。据此,我们可以推论,如果客观速度相等,在较小图形中的物体的运动速度看上去为较大图形中物体运动速度的2倍。这种结果可用各种速度、各种大小关系以及一些控制因素来证实。所有这些实验的结果由布朗正确地归纳如下:“如果在一个同质场中,人们可在运动场的所有线条维度方面变换其位置,那么,他就必须用一种相似的量来转变刺激的速度。以便使速度的现象同一性(phenomenal
  identity of velocity)得以产生。随着一个场的线条维度从1转变到10,Vs/VB的商也倾向于从1到10发生改变”(1931年,p.126)。

    从我们的理论中可以容易地看到,场必须同质,以便使这种结果成为现实。如果场是异质的,那么用图形纸覆盖的光圈,以及在两个场内的移置,便不再限于具有不同大小的孔径的格局了,而是涉及那些在S和B的图样中十分相似的异质。结果,这些东西之间的差别应当减少,布朗已经证明了那种情况(异质性增加了业已提到过的似动速度;见边码p.282)。

    如果只有一些维度发生改变,而其余的维度则保持不变,那么,速度方面的相应变化比起所有的维度都发生变化来,前者的变化肯定较小。这一情况在光圈孔径的长度变化、光圈孔径的宽度变化以及物体大小在一系列不同结合中的变化中已经得到证明。我将提供两个例子:在图形保持不变的情况下,S中孔径在长度上为B中孔径的2倍,那么商Vs/VB便是1.38,如果图形也发生变换的话,则商为2。如果光圈相等,图形大小不等,那么,较大的图形必须比较小的图形移动得更快,方能表现出相等。这就意味着:在相等的刺激条件下,大物体(在现象上)比小物体移动得更慢。

    如果场除了照明量以外恰巧相似的话,那么,较亮场内的物体必须客观上比较暗场内的物体移动得更快,方能显得速度相等。“现象明度的增加减少了现象速度”(1931年,P.223)。

    最后,朝着运动方向的一些线条,从现象上看,比起那些与运动方向呈直角交叉的线条移动得更快些。

    从布朗的结果导出一般原理的可推断性

在两根终端线之间有一个点以一致的速度移动看,从左侧线的
o点开始,时间为to,在时间t1时到达a点,如此等等,直到它一直到达右侧线为止。在第一个时间间歇t1-to期间,点和左侧线之间的距离从零向Oa转变,在下一个时间间歇t2-t1期间,距离的变化从Oa到Ob,如此等等,在相等的时间间歇期间,一切增长数都是相等的。但是,这些相等的距离增长数是否对引起可见运动同等有效?或者,先前存在的距离越小,增长数是否将更加有效?也许在下述形式中,即根据对数定律,相等的增长数并非同等有效,而是除以先前存在的距离后得出的相等增长商数。在那种情况下,点的移动离开O点越远,来自O点的进一步移置将变得更不有效,然而,与此同时,涉及右侧线的移置将变得越加有效,这两种变化以下述方式结合起来,即在路径的中央,同样的客观移置将对运动产生最小的影响。从量化角度讲,这一假设不可能正确,但是,同样不可能的是,绝对相等的增长数具有相等的效果。布朗本人报告说,在阈限实验中,运动先在光圈孔径的边缘出现,只是到了后来才在中央部分出现(1931年b)。从质化角度讲,如此的考虑导致这样一种推论,即较小的场一定比较大的场具有更大的速度,但是,只要我们的知识不超出目前所掌握的范围,那么,我们除了指出对布朗的转换定律(Brown’s
  law of transposition)负有责任的这样一种关系的可能性以外,便不可能做别的什么事了。在这些条件下,如果去猜测由运动着的物体的大小对似动速度产生的影响与光圈孔径的大小对似动速度产生的影响属同样类型,或者大小或容积是否会向运动着的物体提供一种惯性,这种惯性本身将会使较大物体运动得更慢,恐怕是不成熟的。朝着运动方向的线条比那些与运动方向成直角交叉的线条移动得更快,这一事实至少提示了这种严格的“动力”解释的可能性,这种“动力”解释从下列事实得到了支持,即在断续实验中,德西尔瓦(De
  Silva)发现较宽的线条移动速度比较窄的线条移动速度明显地更加缓慢,后者的运动在大小和距离关系似乎不起作用的条件下更加平稳。

    最后,明度效应成为可以理解的,如果我们把明度作为图形一背景的梯度来解释,作为图形的更强清晰度来解释,那么这是与布朗的仪器相一致的,也与他为场的强烈变暗效应所提供的描述相符合,在场的强烈变暗情形中,图形轮廓变模糊了(1931年,p.223)。我们可以下结论说,物体的图形特性越明显,它的运动性就越小。

    提出这些建议(不仅为人们所需要,而且也能够得到实验证明)已经足够了。它们至少反映了布朗结果的理论可能性。
  布朗的结果和柯特定律

    我们现在从布朗和柯特(Korte)的研究中提取其他一些结果,也就是说,它们涉及到断续运动。从现象上讲,断续运动像任何一种现象运动一样具有一种速度,尽管没有与此相一致的物理速度,因为从物理角度看,不存在运动。但是,我们能够通过以下考虑来界说客观的断续速度。在断续的呈现中,一个点在tl时刻出现在A上,持续一定时间(e1),然后经过一段时间间歇P以后,另一个点在t2时刻出现在B上。于是,我们可以说,客观的断续速度是一个点所具有的速度,如果该点在t1和t2两个时刻之间实际上从A处向B处移动的话。假如用V表示客观的断续速度,我们可以解释v=AB/(t2-t1),或者由于t2-t1=e1
  +P,v=AB/(e1+P)。最后,用s表AB,用t距离AB,用t表币e
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!