按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
搅苏庋惶跚摺U飧銮哂屑父龅偷拇翱冢饫锟梢钥吹剑馐堑臀盏拇翱冢钦饫镉幸桓鑫辗濉N颐强聪旅娴耐急冉锨宄馐蔷慕院蟮囊桓龉庀说奈仗匦郧摺U飧龇搴懿缓茫怯捎贠H根,有人叫水根这样一种杂质在里边造成了一个吸收。其他有几个吸收的谷,就是吸收的窗口。所以,现在科学家们正在研究所谓全波光纤,就是它的带宽可以达到400纳米,从1250纳米到1650纳米这么宽都是低吸收的,就把这个峰啊给它砍掉,现在已经做到了,但是市场上还很少。
下面我们讲光纤的色散。色散有几个分类,如果是光源,由于光源不是很纯,再加上光的调制过程当中要使带宽展宽,所以这样的话就造成了波长色散。对于多模光纤来说,由于模式很多,它们模式之间速度也不一样,所以就是模式色散就产生了。单模光纤本身也是有色散的,它的色散是由于材料本身有色散,另外这个波导结构,一个高折射的,一个低折射的,形成的一个柱形的波导,它的结构也不一定是很完善,本身它也产生色散。
另外,光纤本身它的形状可能不对称,不会做得非常圆。另外,它有的时候要受到硬力,受到外界的磁场的干扰,这些因素就产生了双折射现象,就是两个偏振的方向相互垂直的模。它们传播的速度不一样,这就是双折射。这样就引起了偏振色散,所以色散可以分成这样几类。
我们从这张图上可以看到,这边是纵坐标是色散,横坐标是波长。对于过去那个常规光纤,就是1。31微米这个附近的这个波长的光纤我们开始把它零色散点设在1。31微米,这个叫做常规光纤。它的色散曲线是这样的,随着波长而变。以后我们发展了色散位移光纤,就是把它的零色散点,放在1。55微米这个地方,那么这样的光纤特性是这样的,在1。55微米附近我们都可以用这样的光纤,因为色散比较小。
下面我们介绍光纤通信系统,我们先从单路的光纤通信开始,最早的光纤通信是光电混合的,它要把光信号由电来调制,调制我们这个发光二极管,或者是激光器,就是半导体激光器。使它发出的信号除了载波之外,还有一个被调制的信号在上面,把这个光波送到光纤里去传输。大概过了100公里左右,就需要加一个放大器,这个放大器在过去是电子的,要把光信号变成电信号进行放大、整形,我们叫中继器,然后由它再转成光信号发射出去。这边有个接受器,主要是有一个光电探测器,能够把光信号变成电信号,然后解开信号的载波,载波的信号。所以这个是光电光中继的,这样的一种数字通信系统。后来我们发展了光放大器,这是一个很重要的发明,这样就不需要经过电了,就是光 光 光的传输,这是单信道的光中继器的数字通信系统,其他部分都是很像的,都是一样的。
我们再谈谈波分复用的光通信系统。它是这样的,它是激光器有好多个,发出不同颜色的光,不同频率的光,然后把它用光的合波器,我们叫做WDM的这个器件,把这些光信号都合在一起,送到单根光纤里去。然后中间经过功率放大,线路放大,前置放大,一直到用户手里,这就是我们现在波分复用的光通信系统的一个原理。
刚才讲的波分复用是WDM,现在经常又提到DWDM,这是什么意思呢?这是密集波分复用。密集波分复用什么意思呢?就是它这个波非常密,它的间隔很小,同一个光纤的窗口,信道间隔很小,这个叫密集波分复用。因为我们现在能够使用的是光纤放大器,它的频带是有一定的宽度,大概40纳米左右,正好是在C波段,所以我们在C波段就做成很密集的波的信号,这个波束的数量可以从8个到16个、到32个、到64个,再继续增多。这就随着技术的发展,间隔就越来越小。现在我们看一看,一个点到点的密集波分复用系统它的原理图。这里是很多信道,合在一起复用,然后放大,但是中间呢,我们可能要下载一个信号。比如说我们从哈尔滨发一个信号到广州,也许北京就要下载一个信号,另外北京还要送一个信号上去。可以下可以上,这个呢,我们叫做分插复用器,或者上路下路这样一个复用器。
还有一种更加改进的就是环状的网络。中间还要除了这个OADM以外,对于外网要进行上下的工作,另外还要有一个中心站来控制,里边有一个路由器,这个电子学里边都有路由器。它就决定了你的光波向哪个方向走。这个中心站发出信号,分配这些配置这些光波,使它朝不同的方向去,送到不同的站点、结点。很多的网就是可以是很多的圆圈,很多的环状的网把它组成,这是很复杂的。我们可以把它分成三个层次,一个就是长途干线网,这个是远距离的。这个是城市里边一个大城市它有很多的光纤的用户,组成了一个城市网。另外还有到用户手里,比如一个单位、一个大楼,一个家庭,我们这里所用的叫本地就是接入网。有这样三个:长途、城域、本地网。这三个点之间要有连接,我们是用光交叉连接,叫OXC这么一个东西来把它连起来。就是一些光开关,要使得我们光纤可以每一个信道都可以通到另外其他的信道里边,可以自由交换。所以这些干线之间,这些大的城市之间,都要加上光交叉连接的网络。另外,到用户去我们要有上路下路,就是光分插复用器,叫OADM,蓝颜色的就是这样。每个用户都是需要有这样的东西,这就是我们现在光纤通信的一个网络情况。
下面我们要说一下波分复用,特别是密集波分复用,它有什么优越性。它的优点是这样的,有这样三点,一个就是可以充分利用光纤带宽的资源。比如说我们对全波光纤它有400个纳米,间隔如果是25G赫兹的话,那么就可以容纳640个波长,一根光纤可以有640个信道,当然我们那个间隔要是再小,可以更加多。所以,这个光纤本身是有很大很大的潜力,我们要充分地挖掘,所以用这种WDM的形式,我们用单通光纤可以同时输送音频、数据、文字、图像等多媒体的信号。
第二个优点就是这种方式比较灵活,可以适应于各种网络形式,干线网、局域网、广播网都可以,配合了OXC和OADM。这样的话,我们就可以在网络当中上下路由交换很自由。甚至于一根光纤可以对讲,对传信号。第三个优点就是节约光纤和器件的投资。因为我们不用为了多一个信道就加一根光纤,把这个地下挖起来再埋设,我们就一根光纤就增加它的容量就可以了,节约大量的光纤材料。另外,对于器件的要求也不那么高了。虽然你达不到很高的速度,但是如果并行的数目比较高的话,就可以了。就像我们的脑子,神经网络,它的运算速度并不很快,但是由于它是高度互联,所以它照样是可以提高运算的速度,一样的。
下面我们讲光纤通信器件,这个光纤通信器件我们把它分类一下,大概光纤通信分成两部分,一个是光的传输,另外一个是光的交换。这个传输部分呢,我们有很多的器件,必须用的,有源的器件,和无源的器件。有源就是说我们要用电来控制的,比如说半导体激光器光源,是把电信号变成光信号,探测器是把光信号变成电信号。光纤放大器也是需要用电来控制,要有一个泵浦源,还有光的调制器等等。无源器件连接起两个光纤,一拧把它连接起来,耦合器。一根光纤要分成几路,就叫分路器,环形器下面再介绍。滤波器要把光纤的频率让它变得很窄,很纯。隔离器也是为了隔离这些信号之间的干扰的。另外呢,衰减器,可以随意地调节输出的大小,特别是波分复用要求它出来的光都是同样的强度。偏振控制器,刚才我讲了,这个光纤是很容易改变偏振方向的,所以我们要用偏振控制器来补偿。下面是色散补偿,这个已经介绍了。分岔器,这主要是为波分复用器服务的。
下面我们讲光交换器。光交换的系统,这里面所需要的器件,光开关,这个开关不仅是空间的开关,还有波长的转换。另外,还有上路下路的分叉复用,还有互联、开关互联。下面我们先讲光传输器件,这个图给出了DWDM系统,发射端的光器件。这里是有很多不同颜色的发光激光器,另外每一个激光器都要进行信号的调制,把信号载进去。还要调整它的光强,使它们都是很均匀的,一样的强度。然后要锁定它的频率。最后进入到合波器里边,然后再变成了一路光纤传输,中间要经过放大器,后面还有探测器,我们分别介绍一下。
首先是半导体激光器,这个半导体激光器呢,有很多种,我这里只介绍两种。这个叫做FP型的,这是两个谐振腔,这两个腔是平行腔,是晶体的结,里面组成,一个前面一个后面,中间是放大介质,主要是PN结材料,这种激光器发射的光不够窄,它的频率不够窄,上面还有点小峰。频带比较宽,就不太理想。我们把这个反射器做一个改进,不是用两个镜子,而是用PN结,一端做上了周期性变化的一个光栅,这个折射率周期性变化。这样的话,这个光栅本身就是一个反射器,它是一个布拉克光栅,光在里面要来回地反射。最后,只能输出一个单纯的光,所以这个光就非常窄,一个单脉冲,这个是分布反馈激光器。
下面我们介绍探测器。这样一个器件的作用,就是把光变成电,后来又进一步发展了具有放大能力的,不仅是转换,还有放大,叫有倍增区的,在这里。所以叫雪崩光电二极管。它也是把光信号变成电信号,但是它效率更高,下面讲光放大器,这里它的主要的原理我们简单地说一下。信号从这儿输进去,经过一个耦合器,这是可以说是两个波长,一个980的,一个1。5的,混到这里面去,然后放大。最后出来以前,给它滤波一下,把那些噪音信号去掉。中间还要加两个隔离器,隔离器的作用就是它只能一个方向传播,反的方向是不能传播的。这样是可以防止光源受到损害,这就是掺铒光纤放大器的一个简单的结果。
下面我们谈半导体的光放大器。半导体的PN结结构,我们不要这个谐振腔,那么它就是一个放大器,弱信号进来以后,经过增益介质、放大介质,就可以输出一个强光。这个器件有缺点,就是它的噪声比较大,另外还有一些其他的问题,所以没有被广泛应用,经过改进以后还是可以用的。光调制器,就是把电信号调制,我们所需要的这个信号调制进去。声频的或者是电视信号,各种信号调进去。怎么调制呢?有两种方法:一种方法是内调制,就是在半导体激光器上面加电压,这个电压的大小不同,就得到不同的调制信号,这叫内调制。但是它速度是有限的,它只能在2。5G以下。2。5 G以上。比如10G那就必须用外调制的,就是一个外调制的铌酸锂电光调制器。它是把光分成两路,这两路汇集到这儿进行干涉。它的相位它干涉的情况决定于这两个相位差,而这个相位差是由电场来造成的。
下面我们讲光交换器件。大家知道光信号,一个波分复用的信号进来,要进行解复用,这些不同的频率的信号,要进行交换。比如说我这个信道1要跑到信道4去,信道2要跑到信道6去,要进行交换,这个交换就是靠中间这个名叫OXC,就是光学交叉连接器。它就是一个开关阵列,光开关的阵列。所以这个开关阵列它的基本的器件是光开关,所以下面我们要讲光开关。光开关的应用有很多,一个是交叉互联系统,另外,分插复用系统。还有光路的保护监控,要切换,这也需要光开关。先来看看交叉互联这个网络,它的单元是开关,开关有很多种,我们介绍七种。一个是电光开关,它利用电光效应,加电场就会改变折射率,改变光的相位,是经过一个干涉仪的话就可以得到不同的传播方向。下面是一个马赫 陈德尔干涉仪,它也是用电来控制的。改变它的相位,使得相位差不同,原来从四口出来,就变成三口出来就实现了开关。刚才讲的是电光效应,现在我们讲热光效应。就是形式很像,但这两个臂上面加的是两个电极,它是靠加电流加热的办法使得折射率改变,温度升高,折射率变化。温度升到一定的程度,相位改变到一定程度,就从四换到三,开关转换,既是波长的转换,又是对某一个频道来讲,又是开关的转换。
另外一种很有趣的气泡开关。这个发明人也是很有意思,他把热喷墨打印技术,和硅平面的波导技术结合起来。气泡式开关,很有趣的。下面这种是