ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
¾ÅÉ«Êé¼® ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

the+critique+of+pure+reason_´¿´âÀíÐÔÅúÅÐ-µÚ21ÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



metaphysical¡¡juggling£©£»¡¡but¡¡as¡¡a¡¡critique¡¡of¡¡understanding¡¡and
reason¡¡in¡¡regard¡¡to¡¡their¡¡hyperphysical¡¡use¡£¡¡This¡¡critique¡¡will¡¡expose
the¡¡groundless¡¡nature¡¡of¡¡the¡¡pretensions¡¡of¡¡these¡¡two¡¡faculties£»¡¡and
invalidate¡¡their¡¡claims¡¡to¡¡the¡¡discovery¡¡and¡¡enlargement¡¡of¡¡our
cognitions¡¡merely¡¡by¡¡means¡¡of¡¡transcendental¡¡principles£»¡¡and¡¡show¡¡that
the¡¡proper¡¡employment¡¡of¡¡these¡¡faculties¡¡is¡¡to¡¡test¡¡the¡¡judgements
made¡¡by¡¡the¡¡pure¡¡understanding£»¡¡and¡¡to¡¡guard¡¡it¡¡from¡¡sophistical
delusion¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Transcendental¡¡Logic¡£¡¡FIRST¡¡DIVISION¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡TRANSCENDENTAL¡¡ANALYTIC¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡SS¡¡I¡£

¡¡¡¡Transcendental¡¡analytic¡¡is¡¡the¡¡dissection¡¡of¡¡the¡¡whole¡¡of¡¡our¡¡a
priori¡¡knowledge¡¡into¡¡the¡¡elements¡¡of¡¡the¡¡pure¡¡cognition¡¡of¡¡the
understanding¡£¡¡In¡¡order¡¡to¡¡effect¡¡our¡¡purpose£»¡¡it¡¡is¡¡necessary£º¡¡£¨1£©
That¡¡the¡¡conceptions¡¡be¡¡pure¡¡and¡¡not¡¡empirical£»¡¡£¨2£©¡¡That¡¡they¡¡belong
not¡¡to¡¡intuition¡¡and¡¡sensibility£»¡¡but¡¡to¡¡thought¡¡and¡¡understanding£»
£¨3£©¡¡That¡¡they¡¡be¡¡elementary¡¡conceptions£»¡¡and¡¡as¡¡such£»¡¡quite
different¡¡from¡¡deduced¡¡or¡¡pound¡¡conceptions£»¡¡£¨4£©¡¡That¡¡our¡¡table
of¡¡these¡¡elementary¡¡conceptions¡¡be¡¡plete£»¡¡and¡¡fill¡¡up¡¡the¡¡whole
sphere¡¡of¡¡the¡¡pure¡¡understanding¡£¡¡Now¡¡this¡¡pleteness¡¡of¡¡a¡¡science
cannot¡¡be¡¡accepted¡¡with¡¡confidence¡¡on¡¡the¡¡guarantee¡¡of¡¡a¡¡mere¡¡estimate
of¡¡its¡¡existence¡¡in¡¡an¡¡aggregate¡¡formed¡¡only¡¡by¡¡means¡¡of¡¡repeated
experiments¡¡and¡¡attempts¡£¡¡The¡¡pleteness¡¡which¡¡we¡¡require¡¡is
possible¡¡only¡¡by¡¡means¡¡of¡¡an¡¡idea¡¡of¡¡the¡¡totality¡¡of¡¡the¡¡a¡¡priori
cognition¡¡of¡¡the¡¡understanding£»¡¡and¡¡through¡¡the¡¡thereby¡¡determined
division¡¡of¡¡the¡¡conceptions¡¡which¡¡form¡¡the¡¡said¡¡whole£»¡¡consequently£»
only¡¡by¡¡means¡¡of¡¡their¡¡connection¡¡in¡¡a¡¡system¡£¡¡Pure¡¡understanding
distinguishes¡¡itself¡¡not¡¡merely¡¡from¡¡everything¡¡empirical£»¡¡but¡¡also
pletely¡¡from¡¡all¡¡sensibility¡£¡¡It¡¡is¡¡a¡¡unity¡¡self¡­subsistent£»
self¡­sufficient£»¡¡and¡¡not¡¡to¡¡be¡¡enlarged¡¡by¡¡any¡¡additions¡¡from¡¡without¡£
Hence¡¡the¡¡sum¡¡of¡¡its¡¡cognition¡¡constitutes¡¡a¡¡system¡¡to¡¡be¡¡determined
by¡¡and¡¡prised¡¡under¡¡an¡¡idea£»¡¡and¡¡the¡¡pleteness¡¡and
articulation¡¡of¡¡this¡¡system¡¡can¡¡at¡¡the¡¡same¡¡time¡¡serve¡¡as¡¡a¡¡test¡¡of
the¡¡correctness¡¡and¡¡genuineness¡¡of¡¡all¡¡the¡¡parts¡¡of¡¡cognition¡¡that
belong¡¡to¡¡it¡£¡¡The¡¡whole¡¡of¡¡this¡¡part¡¡of¡¡transcendental¡¡logic
consists¡¡of¡¡two¡¡books£»¡¡of¡¡which¡¡the¡¡one¡¡contains¡¡the¡¡conceptions£»
and¡¡the¡¡other¡¡the¡¡principles¡¡of¡¡pure¡¡understanding¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡BOOK¡¡I¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Analytic¡¡of¡¡Conceptions¡£¡¡SS¡¡2

¡¡¡¡By¡¡the¡¡term¡¡Analytic¡¡of¡¡Conceptions£»¡¡I¡¡do¡¡not¡¡understand¡¡the
analysis¡¡of¡¡these£»¡¡or¡¡the¡¡usual¡¡process¡¡in¡¡philosophical
investigations¡¡of¡¡dissecting¡¡the¡¡conceptions¡¡which¡¡present¡¡themselves£»
according¡¡to¡¡their¡¡content£»¡¡and¡¡so¡¡making¡¡them¡¡clear£»¡¡but¡¡I¡¡mean¡¡the
hitherto¡¡little¡¡attempted¡¡dissection¡¡of¡¡the¡¡faculty¡¡of¡¡understanding
itself£»¡¡in¡¡order¡¡to¡¡investigate¡¡the¡¡possibility¡¡of¡¡conceptions¡¡a
priori£»¡¡by¡¡looking¡¡for¡¡them¡¡in¡¡the¡¡understanding¡¡alone£»¡¡as¡¡their
birthplace£»¡¡and¡¡analysing¡¡the¡¡pure¡¡use¡¡of¡¡this¡¡faculty¡£¡¡For¡¡this¡¡is
the¡¡proper¡¡duty¡¡of¡¡a¡¡transcendental¡¡philosophy£»¡¡what¡¡remains¡¡is¡¡the
logical¡¡treatment¡¡of¡¡the¡¡conceptions¡¡in¡¡philosophy¡¡in¡¡general¡£¡¡We
shall¡¡therefore¡¡follow¡¡up¡¡the¡¡pure¡¡conceptions¡¡even¡¡to¡¡their¡¡germs¡¡and
beginnings¡¡in¡¡the¡¡human¡¡understanding£»¡¡in¡¡which¡¡they¡¡lie£»¡¡until¡¡they
are¡¡developed¡¡on¡¡occasions¡¡presented¡¡by¡¡experience£»¡¡and£»¡¡freed¡¡by
the¡¡same¡¡understanding¡¡from¡¡the¡¡empirical¡¡conditions¡¡attaching¡¡to
them£»¡¡are¡¡set¡¡forth¡¡in¡¡their¡¡unalloyed¡¡purity¡£
¡¡¡¡CHAPTER¡¡I¡£¡¡Of¡¡the¡¡Transcendental¡¡Clue¡¡to¡¡the¡¡Discovery¡¡of¡¡all¡¡Pure
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Conceptions¡¡of¡¡the¡¡Understanding¡£

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Introductory¡£¡¡SS¡¡3

¡¡¡¡When¡¡we¡¡call¡¡into¡¡play¡¡a¡¡faculty¡¡of¡¡cognition£»¡¡different¡¡conceptions
manifest¡¡themselves¡¡according¡¡to¡¡the¡¡different¡¡circumstances£»¡¡and¡¡make
known¡¡this¡¡faculty£»¡¡and¡¡assemble¡¡themselves¡¡into¡¡a¡¡more¡¡or¡¡less
extensive¡¡collection£»¡¡according¡¡to¡¡the¡¡time¡¡or¡¡penetration¡¡that¡¡has
been¡¡applied¡¡to¡¡the¡¡consideration¡¡of¡¡them¡£¡¡Where¡¡this¡¡process£»
conducted¡¡as¡¡it¡¡is¡¡mechanically£»¡¡so¡¡to¡¡speak£»¡¡will¡¡end£»¡¡cannot¡¡be
determined¡¡with¡¡certainty¡£¡¡Besides£»¡¡the¡¡conceptions¡¡which¡¡we
discover¡¡in¡¡this¡¡haphazard¡¡manner¡¡present¡¡themselves¡¡by¡¡no¡¡means¡¡in
order¡¡and¡¡systematic¡¡unity£»¡¡but¡¡are¡¡at¡¡last¡¡coupled¡¡together¡¡only
according¡¡to¡¡resemblances¡¡to¡¡each¡¡other£»¡¡and¡¡arranged¡¡in¡¡series£»
according¡¡to¡¡the¡¡quantity¡¡of¡¡their¡¡content£»¡¡from¡¡the¡¡simpler¡¡to¡¡the
more¡¡plex¡­¡¡series¡¡which¡¡are¡¡anything¡¡but¡¡systematic£»¡¡though¡¡not
altogether¡¡without¡¡a¡¡certain¡¡kind¡¡of¡¡method¡¡in¡¡their¡¡construction¡£
¡¡¡¡Transcendental¡¡philosophy¡¡has¡¡the¡¡advantage£»¡¡and¡¡moreover¡¡the
duty£»¡¡of¡¡searching¡¡for¡¡its¡¡conceptions¡¡according¡¡to¡¡a¡¡principle£»
because¡¡these¡¡conceptions¡¡spring¡¡pure¡¡and¡¡unmixed¡¡out¡¡of¡¡the
understanding¡¡as¡¡an¡¡absolute¡¡unity£»¡¡and¡¡therefore¡¡must¡¡be¡¡connected
with¡¡each¡¡other¡¡according¡¡to¡¡one¡¡conception¡¡or¡¡idea¡£¡¡A¡¡connection¡¡of
this¡¡kind£»¡¡however£»¡¡furnishes¡¡us¡¡with¡¡a¡¡ready¡¡prepared¡¡rule£»¡¡by
which¡¡its¡¡proper¡¡place¡¡may¡¡be¡¡assigned¡¡to¡¡every¡¡pure¡¡conception¡¡of¡¡the
understanding£»¡¡and¡¡the¡¡pleteness¡¡of¡¡the¡¡system¡¡of¡¡all¡¡be¡¡determined
a¡¡priori¡­¡¡both¡¡which¡¡would¡¡otherwise¡¡have¡¡been¡¡dependent¡¡on¡¡mere
choice¡¡or¡¡chance¡£

¡¡¡¡SECTION¡¡1¡£¡¡Of¡¡defined¡¡above¡¡Use¡¡of¡¡understanding¡¡in¡¡General¡£¡¡SS¡¡4

¡¡¡¡The¡¡understanding¡¡was¡¡defined¡¡above¡¡only¡¡negatively£»¡¡as¡¡a
non¡­sensuous¡¡faculty¡¡of¡¡cognition¡£¡¡Now£»¡¡independently¡¡of
sensibility£»¡¡we¡¡cannot¡¡possibly¡¡have¡¡any¡¡intuition£»¡¡consequently£»
the¡¡understanding¡¡is¡¡no¡¡faculty¡¡of¡¡intuition¡£¡¡But¡¡besides¡¡intuition
there¡¡is¡¡no¡¡other¡¡mode¡¡of¡¡cognition£»¡¡except¡¡through¡¡conceptions£»
consequently£»¡¡the¡¡cognition¡¡of¡¡every£»¡¡at¡¡least¡¡of¡¡every¡¡human£»
understanding¡¡is¡¡a¡¡cognition¡¡through¡¡conceptions¡­¡¡not¡¡intuitive£»¡¡but
discursive¡£¡¡All¡¡intuitions£»¡¡as¡¡sensuous£»¡¡depend¡¡on¡¡affections£»
conceptions£»¡¡therefore£»¡¡upon¡¡functions¡£¡¡By¡¡the¡¡word¡¡function¡¡I
understand¡¡the¡¡unity¡¡of¡¡the¡¡act¡¡of¡¡arranging¡¡diverse¡¡representations
under¡¡one¡¡mon¡¡representation¡£¡¡Conceptions£»¡¡then£»¡¡are¡¡based¡¡on¡¡the
spontaneity¡¡of¡¡thought£»¡¡as¡¡sensuous¡¡intuitions¡¡are¡¡on¡¡the
receptivity¡¡of¡¡impressions¡£¡¡Now£»¡¡the¡¡understanding¡¡cannot¡¡make¡¡any
other¡¡use¡¡of¡¡these¡¡conceptions¡¡than¡¡to¡¡judge¡¡by¡¡means¡¡of¡¡them¡£¡¡As¡¡no
representation£»¡¡except¡¡an¡¡intuition£»¡¡relates¡¡immediately¡¡to¡¡its
object£»¡¡a¡¡conception¡¡never¡¡relates¡¡immediately¡¡to¡¡an¡¡object£»¡¡but
only¡¡to¡¡some¡¡other¡¡representation¡¡thereof£»¡¡be¡¡that¡¡an¡¡intuition¡¡or
itself¡¡a¡¡conception¡£¡¡A¡¡judgement£»¡¡therefore£»¡¡is¡¡the¡¡mediate
cognition¡¡of¡¡an¡¡object£»¡¡consequently¡¡the¡¡representation¡¡of¡¡a
representation¡¡of¡¡it¡£¡¡In¡¡every¡¡judgement¡¡there¡¡is¡¡a¡¡conception¡¡which
applies¡¡to£»¡¡and¡¡is¡¡valid¡¡for¡¡many¡¡other¡¡conceptions£»¡¡and¡¡which¡¡among
these¡¡prehends¡¡also¡¡a¡¡given¡¡representation£»¡¡this¡¡last¡¡being
immediately¡¡connected¡¡with¡¡an¡¡object¡£¡¡For¡¡example£»¡¡in¡¡the¡¡judgement¡­
¡¨All¡¡bodies¡¡are¡¡divisible£»¡¨¡¡our¡¡conception¡¡of¡¡divisible¡¡applies¡¡to
various¡¡other¡¡conceptions£»¡¡among¡¡these£»¡¡however£»¡¡it¡¡is¡¡here
particularly¡¡applied¡¡to¡¡the¡¡conception¡¡of¡¡body£»¡¡and¡¡this¡¡conception¡¡of
body¡¡relates¡¡to¡¡certain¡¡phenomena¡¡which¡¡occur¡¡to¡¡us¡£¡¡These¡¡objects£»
therefore£»¡¡are¡¡mediately¡¡represented¡¡by¡¡the¡¡conception¡¡of
divisibility¡£¡¡All¡¡judgements£»¡¡accordingly£»¡¡are¡¡functions¡¡of¡¡unity¡¡in
our¡¡representations£»¡¡inasmuch¡¡as£»¡¡instead¡¡of¡¡an¡¡immediate£»¡¡a¡¡higher
representation£»¡¡which¡¡prises¡¡this¡¡and¡¡various¡¡others£»¡¡is¡¡used¡¡for
our¡¡cognition¡¡of¡¡the¡¡object£»¡¡and¡¡thereby¡¡many¡¡possible¡¡cognitions
are¡¡collected¡¡into¡¡one¡£¡¡But¡¡we¡¡can¡¡reduce¡¡all¡¡acts¡¡of¡¡the
understanding¡¡to¡¡judgements£»¡¡so¡¡that¡¡understanding¡¡may¡¡be
represented¡¡as¡¡the¡¡faculty¡¡of¡¡judging¡£¡¡For¡¡it¡¡is£»¡¡according¡¡to¡¡what
has¡¡been¡¡said¡¡above£»¡¡a¡¡faculty¡¡of¡¡thought¡£¡¡Now¡¡thought¡¡is¡¡cognition¡¡by
means¡¡of¡¡conceptions¡£¡¡But¡¡conceptions£»¡¡as¡¡predicates¡¡of¡¡possible
judgements£»¡¡relate¡¡to¡¡some¡¡representation¡¡of¡¡a¡¡yet¡¡undetermined
object¡£¡¡Thus¡¡the¡¡conception¡¡of¡¡body¡¡indicates¡¡something¡­¡¡for
example£»¡¡metal¡­¡¡which¡¡can¡¡be¡¡cognized¡¡by¡¡means¡¡of¡¡that¡¡conception¡£
It¡¡is¡¡therefore¡¡a¡¡conception£»¡¡for¡¡the¡¡reason¡¡alone¡¡that¡¡other
representations¡¡are¡¡contained¡¡under¡¡it£»¡¡by¡¡means¡¡of¡¡which¡¡it¡¡can
relate¡¡to¡¡objects¡£¡¡It¡¡is¡¡therefore¡¡the¡¡predicate¡¡to¡¡a¡¡possible
judgement£»¡¡for¡¡example£º¡¡¡¨Every¡¡metal¡¡is¡¡a¡¡body¡£¡¨¡¡All¡¡the¡¡functions
of¡¡the¡¡understanding¡¡therefore¡¡can¡¡be¡¡discovered£»¡¡when¡¡we¡¡can
pletely¡¡exhibit¡¡the¡¡functions¡¡of¡¡unity¡¡in¡¡judgements¡£¡¡And¡¡that¡¡this
may¡¡be¡¡effected¡¡very¡¡easily£»¡¡the¡¡following¡¡section¡¡will¡¡show¡£

¡¡¡¡SECTION¡¡II¡£¡¡Of¡¡the¡¡Logical¡¡Function¡¡of¡¡the¡¡Understanding¡¡in
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Judgements¡£¡¡SS¡¡5

¡¡¡¡If¡¡we¡¡abstract¡¡all¡¡the¡¡content¡¡of¡¡a¡¡judgement£»¡¡and¡¡consider¡¡only¡¡the
intellectual¡¡form¡¡thereof£»¡¡we¡¡find¡¡that¡¡the¡¡function¡¡of¡¡thought¡¡in¡¡a
judgement¡¡can¡¡be¡¡brought¡¡under¡¡four¡¡heads£»¡¡of¡¡which¡¡each¡¡contains
three¡¡momenta¡£¡¡These¡¡may¡¡be¡¡conveniently¡¡represented¡¡in¡¡the
following¡¡table£º

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quantity¡¡of¡¡judgements
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Universal
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Particular
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Singular

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Quality¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Relation
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Affirmative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Categorical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Negative¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Hypothetical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Infinite¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Disjunctive

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Modality
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Problematical
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Assertorical
¡¡¡¡¡¡¡¡¡¡¡¡
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡