按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。
在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。
公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。
随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑;心部含碳量为0。15~0。4%,而表面含碳量却达0。6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。
1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。法国人奥斯蒙德确立的铁的同素异构理论,以及英国人奥斯汀最早制定的铁碳相图,为现代热处理工艺初步奠定了理论基础。与此同时,人们还研究了在金属热处理的加热过程中对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。
1850~1880年,对于应用各种气体(诸如氢气、煤气、一氧化碳等)进行保护加热曾有一系列专利。1889~1890年英国人莱克获得多种金属光亮热处理的专利。
二十世纪以来,金属物理的发展和其他新技术的移植应用,使金属热处理工艺得到更大发展。一个显著的进展是1901~1925年,在工业生产中应用转筒炉进行气体渗碳;30年代出现露点电位差计;使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探头等进一步控制炉内气氛碳势的方法;60年代,热处理技术运用了等离子场的作用,发展了离子渗氮、渗碳工艺;激光、电子束技术的应用,又使金属获得了新的表面热处理和化学热处理方法。
金属热处理的工艺
热处理工艺一般包括加热、保温、冷却三个过程,有时只有加热和冷却两个过程。这些过程互相衔接,不可间断。
加热是热处理的重要工序之一。金属热处理的加热方法很多,最早是采用木炭和煤作为热源,进而应用液体和气体燃料。电的应用使加热易于控制,且无环境污染。利用这些热源可以直接加热,也可以通过熔融的盐或金属,以至浮动粒子进行间接加热。
金属加热时,工件暴露在空气中,常常发生氧化、脱碳(即钢铁零件表面碳含量降低),这对于热处理后零件的表面性能有很不利的影响。因而金属通常应在可控气氛或保护气氛中、熔融盐中和真空中加热,也可用涂料或包装方法进行保护加热。
加热温度是热处理工艺的重要工艺参数之一,选择和控制加热温度,是保证热处理质量的主要问题。加热温度随被处理的金属材料和热处理的目的不同而异,但一般都是加热到相变温度以上,以获得高温组织。另外转变需要一定的时间,因此当金属工件表面达到要求的加热温度时,还须在此温度保持一定时间,使内外温度一致,使显微组织转变完全,这段时间称为保温时间。采用高能密度加热和表面热处理时,加热速度极快,一般就没有保温时间,而化学热处理的保温时间往往较长。
冷却也是热处理工艺过程中不可缺少的步骤,冷却方法因工艺不同而不同,主要是控制冷却速度。一般退火的冷却速度最慢,正火的冷却速度较快,淬火的冷却速度更快。但还因钢种不同而有不同的要求,例如空硬钢就可以用正火一样的冷却速度进行淬硬。
金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。
整体热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。
淬火是将工件加热保温后,在水、油或其他无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。
“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。
把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。
表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的能量密度,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和感应加热热处理,常用的热源有氧乙炔或氧丙烷等火焰、感应电流、激光和电子束等。
化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其他合金元素的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其他热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。
热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。
第八十六章 刀具钢材知识和对比
钢是铁、碳和少量其它元素的合金。。不锈钢或者10。5%或以上铬金含量的抗腐蚀性合金钢是该类金属的通用术语。应该记住不锈钢并不是说这种地钢材不生锈或不会被腐蚀,而只不过是它比不含铬的合金的耐腐蚀性能强得多。除了铬金属之外,其它金属元素如镍、钼、钒等也可以加入合金中用于改变合金钢的性能,从而生产出不同等级、不同性能的不锈钢。因应用目的和场所的不同,仔细挑选性能最为合适的不锈钢所制造的刀具,对于你特定工作的效率和成功至关重要
当今刀具常用刃材
8
S…34
1
P…T440V
三层钢)
420J
RBNV
440
D2
8:
一种高碳低硌不锈钢,经过长时间证明具有非常优秀的折中特点,既坚硬又坚韧,既不易生锈又能保持锋利长久。
S…34:
日本钢,隶属日立钢铁公司生产。大多数手工刀采用的材料,也是名牌厂家选用之高级不锈钢材料。TS…34也属于高碳钢,其硬度可作到59…61R,有些人认为是目前最好的刀刃钢材之一。此外,美国的154钢材与TS…34等同。
1:
以前也叫2,是一种低成本的钢材,稍软于S…8。
P…T440V:
近来被认为是超级制刀钢材,比目前市场上的所有不锈钢都经久耐用,长时间无需磨刀。
三层钢):
一种昂贵的日本薄片层压钢材。高碳含量的坚硬里层作为刀刃的中心层,两边经过回火处理的坚韧弹性钢,最终的刀刃集中了良种钢材的特点,品质极佳。其比S…8的坚韧性高25%。
420J:
属于低碳钢,坚韧(甚至不易折断),抗冲击,抗腐蚀,能保持适度锋利,易于保养,有不少观赏刀剑用此钢材。
RBNV:
一种纯粹的碳合金钢,冷钢公司在其购买的大量高级碳钢材中加入少量合金元素增加了这种钢材的坚韧性和持久性,然后按照严格的规则滚轧获得最好的结晶化,使刀刃可以充分利用钢材中的结晶粒方向,使刀刃变得出类拔萃。
440:
也是目前用在高档批量刀具市场上的优质不锈钢,其强度及锋利性甚于TS。
D2:
最近K…BR厂采用了D2型钢材,这是一种优质工具钢,硬度59…60R,深度冷处理至…120度,两次退火,其优点是坚韧和较长时间的刀刃保持性。
刀具钢材
先,要记住刀的性能并非仅由钢材决定的,刀刃的形状也很重要(例如,的刀头不适合剥皮),也许最重要的是热处理。较差的钢材经过良好的热处理也可能生产出更好的刀刃来。比较差或者很差的热处理可能会使不锈钢失去它的一些固有特性,或者导致坚硬的钢变脆。最不幸的是:刀具的三个最重要的特性(刀刃形状、钢材类型、热处理)中热处理是不可能用眼睛辨别出来的,因此,一般人把过多的注意力放在了前面两方面。记住这一点,440经常被嘲笑,但是,我宁愿要440材料的潜水刀也不要L6。正确热处理的5160非常结实,但是如果我想要剥皮刀,我更有兴趣选刀锋保持比较好的,象L521000等等。
二、碳合金钢(非不锈钢)
这一类钢材是通常用于锻造的钢材。其实不锈钢也是可以锻造的(象Sllms就锻造不锈钢);但非常困难。另外,同一块碳钢可以用经由分段冶炼方法来获得非常坚硬的刃端和坚韧而具弹性的背端,而不锈钢不可以这样冶炼。当然,在不同程度上碳钢比不锈钢容易生锈,也比使用不锈钢风险大……但我相信,只要热处理方法正确,下面举出的所有的钢材都相当不错。
在S钢材命名系统中,10是碳钢,其他的则是合金钢,例如,50系列是铬钢。在S命名系统中,带有字符标示的(例如;…2;…2)是工具钢。另外还有**命名系统,但它在刀具界中很少被提及,所以在这里我们可以忽略它。通常在钢材名称中的最后一个数字即为该种钢材的含碳量,如1095约含0。95%的碳,52100约含1。0%的碳,而5160则约含0。60%的碳。
1
这是一种应用得很广泛的优秀钢材,用作刃材可加工出非常坚韧和可深度打磨的刀刃,但它容易生锈。Rndll刀具和dD都用0…1。
这种钢材由于含有0。2%的钒,因此可用于加工相当坚韧和可打磨的刀刃。大部分锉刀都用…1,一种与…2很相似的钢材,只是…1不含钒。
10…系列……1095(1084;1070;1060;1050;等等)
在刀具业中,1095是被用得最广泛的10…系列钢材。按从1095…1050排序,总地来说,含碳量从高到低,可达到的打磨度也从高到低,但坚韧性却从低到高到最高。
同样的,按从1060…1050排序通常适应于制剑业。而对刀来说,1095是一种很“标准”的碳钢材料,性能良好而且成本不贵,具有适当的坚韧度和打磨度。这是一种较单纯的钢材,容易生锈,仅含有两种合金成分:0。95%的碳和0。4%的锰。KBR系列通常使用1095,再加上